
Department of
Information Technology

Box 337

SE-751 05 Uppsala

Sweden

Contention Adapting Search Trees (CA trees)
A concurrent data structure for sets and maps

Why use CA trees?
● Efficient and scalable insert, remove,
 bulk updates, linearizable range queries etc

● Low sequential overhead
● Flexible since skip lists, AVL trees, etc.
 can be plugged in as sequential data
 structures

● Self-adapting to fit access pattern
● Very short traversal of mutable data when
 mutable pointer to immutable data structure
 is used as the sequential data structure
● Gives excellent performance for
 linearizable range queries (even when
 they are very large)

Publications
● Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable

Data, ICCSW’2017
● Efficient Support for Range Queries and Range Updates Using Contention Adapting Search

Trees, LCPC’2015
● Contention Adapting Search Trees. ISPDC’2015
● More Scalable Ordered Set for ETS Using Adaptation, ACM Workshop on Erlang, 2014

More info
http://www.it.uu.se/research/group/languages/software/ca_tree

Experiments
w:x% r:y% q:z%-r where x% insert and remove operations, y% lookup operations and x% range
queries with maximum range size r. Number of items in set ≈ 500000.

KiWi = From “KiWi: A Key-Value Map for Scalable Real-Time Analytics, PPoPP’2016”
k-ary = From “Range queries in non-blocking k-ary search trees, OPODIS’2012”
SnapTree = From “A practical concurrent binary search tree, PPoPP’2010”
ChatterjeeSL = From “Lock-free linearizable 1-dimensional range queries, ICDCN’2017”
NonAtomicSkipList = ConcurrentSkipListMap rom Java’s standard library
AVL-CA = CA tree using AVL tree as sequential data structure, LCPC’2015
SL-CA = CA tree using skip list with fat nodes as sequential data structure, LCPC’2015
Im-Tr-CA = CA tree using a mutable reference to immutable treap as sequential data structure
(ICCSW’2017)

Kjell Winblad
kjell.winblad@it.uu.se

http://winsh.me

How does it work?
● Information about
contention and operations
that benefit from fewer base
nodes is collected in the
base node locks (see right)

● Splits a base node when
the estimated contention is
above a threshold and joins
two base nodes when the
estimated contention is
below a threshold
(see down)

http://winsh.me/

	Slide 1

