ﬂ} .—.}I'(d‘.

H‘.I TAS

UPPSALA

UNIVERSITET

How does it work?

* Information about

Contention Adapting Search Trees (CA trees)

A concurrent data structure for sets and maps

contention and operations
that benefit from fewer base

nodes iIs collected In the

base node locks (see right)

* Splits a base node when

the estimated contention Is
above a threshold and joins
two base nodes when the

estimated contention IS

below a threshold
(see down)

(a) After a split

(b) Imitial

(c) After a join

Kjell Winblad
kjell.winblad@it.uu.se
http://winsh.me

2
SB-

Sequential data structures
(E.g. AVL trees, skip lists, etc.)

Why use CA trees?

* Efficient and scalable insert, remove,

B;

=

bulk updates, linearizable range queries etc
* Low sequential overhead
= « Flexible since skip lists, AVL trees, etc.

Routing nodes

can be plugged In as sequential data

structures

* Self-adapting to fit access pattern

* Very short traversal of mutable data when
mutable pointer to iImmutable data structure

IS used as the sequential data structure

* Gives excellent performance for
linearizable range queries (even when
they are very large)

Experiments

w:x% r:y% q:z%-r where x% insert and remove operations, y% lookup operations and x% range
queries with maximum range size r. Number of items in set = 500000.

KiWi = From “KiWi: A Key-Value Map for Scalable Real-Time Analytics, PPoPP’2016”
k-ary = From “Range queries in non-blocking k-ary search trees, OPODIS'2012”
SnapTree = From “A practical concurrent binary search tree, PPoPP’2010”
ChatterjeeSL = From “Lock-free linearizable 1-dimensional range queries, ICDCN’2017”

NonAtomicSkipList =

ConcurrentSkipListMap rom Java’s standard library

AVL-CA = CA tree using AVL tree as sequential data structure, LCPC’2015
SL-CA = CA tree using skip list with fat nodes as sequential data structure, LCPC’2015
Im-Tr-CA = CA tree using a mutable reference to immutable treap as sequential data structure

(ICCSW’2017)
351 @ Kkiwi
k_

30 - + ary
n —#&— SnapTree
“5" 25 Chatterleit—:-EL
= NMonAtomicSL
S o0 4 —A— AvL-CA
oy SL-CA
= 15 4 —#— Im-Tr-CA
o
=)
= 10 -
-
AL
- 5 -

ﬂ -

1 2 4 8 16

32 64
NMumber of Threads
(a) w:20% r:80%
12 -
E
7 10 -
-
o
© 8-
Q)
o
L
= 01
=
e
S
o
E 2 -
0 - T s 2l
] I I | [| i i | " T '| T Tl L] i r|r
1 2 4 8 16 32 64

Number of Threads

(c) w:20% r:55% q:25%-1000

Publications

Throughput (operations/us)

04 % " " * * * *

™1 J A L B 7 L
1 2 4 8 16 32 64
Number of Threads

(b) w:20% r:55% q:25%-10

o o i
L = LN
| ! |

Throughput (operations/us)
=
PJ
|

—
=t
|

o
o
!

1 P 4 8 16 32 64
Number of Threads

(d) w:20% r:55% q:25%-100000

* Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable

Data, ICCSW’'2017

* Efficient Support for Range Queries and Range Updates Using Contention Adapting Search

Trees, LCPC’2015

* Contention Adapting Search Trees. ISPDC’2015
* More Scalable Ordered Set for ETS Using Adaptation, ACM Workshop on Erlang, 2014

More info

http://www.it.uu.se/research/group/languages/software/ca tree

http://winsh.me/

	Slide 1

