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Abstract
The need for scalable concurrent ordered set data structures with linearizable range query support
is increasing due to the rise of multicore computers, data processing platforms and in-memory
databases. This paper presents a new concurrent ordered set with linearizable range query sup-
port. The new data structure is based on the contention adapting search tree and an immutable
data structure. Experimental results show that the new data structure is as much as three times
faster compared to related data structures. The data structure scales well due to its ability to
adapt the sizes of its immutable parts to the contention level and the sizes of the range queries.
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1 Introduction

The use of concurrent ordered set data structures1 with support for linearizable2 range
queries3 is increasing as multicores are becoming more readily available and due to the rise
of big scale data processing platforms and in-memory databases such as Google’s F1 [23]
and Yahoo’s Flurry [1]. Both of these require set data structures with fast updates4 to
store incoming data while concurrently serving (typically large) linearizable range queries for
analytics [3]. Although there are many concurrent set data structures (e.g. [22, 12, 16]) and
ordered set data structures (e.g. [8, 13, 6]), there are only a few concurrent data structures
with efficient linearizable range queries [5, 2, 17, 19, 7, 3].

This paper proposes a new concurrent ordered set data structure that internally makes
use of an immutable data structure. The difference between an immutable data structure
and its mutable counterpart is that the immutable data structure’s update operations do not
modify the given data structure instance in-place but instead return a new version, leaving
the input instance intact. For many data structures, e.g. binary search trees, the operations
of the immutable version are asymptotically as efficient as in its mutable counterpart [14].
As an example, the insert operation of an immutable balanced binary search tree only needs
to make a copy of the nodes on the path to the inserted node, which only consists of O(logn)
nodes, where n is the number of items that are stored in the search tree.

1 A concurrent ordered set data structure represents a set of items that can be manipulated concurrently
by several threads and where an item consists of an ordered key and optionally some additional data.

2 A linearizable operation appears to happen instantly between the operation’s invocation and return [10].
3 A range query operation returns all items with keys within the given range (specified by two keys).
4 An update operation is an insert operation or a remove operation where the former inserts an item
(replacing an existing item if one with an equal key already exists) and the latter removes an item with
the given key if such an item exists.
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One can derive a concurrent ordered set data structure with linearizable range query
support from a single mutable reference to an immutable data structure [9]. A lookup or a
range query simply performs the operation in the referenced immutable data structure. An
update operation repeatedly tries to update the reference using an atomic compare-and-swap
operation [9] until the update succeeds. Unfortunately, this coarse-grained approach does
not scale when concurrent updates are common due to the scalability bottleneck that exists
in the updating of the shared reference. Instead, several data structures [5, 2] use immutable
parts that can store a fixed number of items to shorten the time range queries need to
spend reading shared mutable data. This fine-grained approach can be efficient when it is
possible to fine-tune the size of the data structure’s immutable parts to fit the sizes of the
range queries (the number of items within the range) and the contention level. However, the
fine-grained approach does not work well when the access pattern is unknown or differs in
different parts of the data structure.

The main contribution of this paper is a new concurrent ordered set data structure
with linearizable range query support that solves the problems with the coarse-grained and
fine-grained approaches described above by dynamically changing the sizes of its immutable
parts to fit the workload at hand. The new data structure is based on the contention adapting
search tree (CA tree) [18, 19, 20] and an immutable data structure. Previous results [19]
show that CA trees using mutable data structures provide good scalability in scenarios with
short range queries. However, previous CA tree variants’ scalability for large range queries is
limited as their range queries lock out other threads from large portions of the data structure
for a time period whose length is proportional to the number of items with keys in the given
range. The new CA tree variant eliminates this problem by utilizing an immutable data
structure. As is shown in this work, the new CA tree variant’s ability to reduce the lock
holding times does not only make its scalability substantially better compared to the old CA
tree variants but also much better than the other recently proposed data structures with
linearizable range query support.

This paper starts with a high-level description of CA trees (Section 2). The new CA tree
variant and its implementation are described in Sections 3 and 4. Analytical and experimental
comparisons with related data structures are given in Sections 5 and 6. The paper finishes
with a conclusion (Section 7).

2 High-Level Description of Contention Adapting Search Trees

Figure 1 The structure of a CA
tree. Numbers denote keys.

CA trees are structured as depicted in Figure 1. The
items that are stored in a CA tree are located in sequential
data structures under the base nodes (see Figure 1). To
efficiently find a specific item in a CA tree, the search is
directed by the keys in the routing nodes. All items stored
under the left branch of a routing node have keys that are
less than the key of the routing node and all items stored
under the right branch have keys that are greater than
or equal to the key in the routing node. The sequential
data structures are protected from concurrent accesses by
locks in the base nodes. A base node lock has a statistics
counter which is incremented when a thread needs to wait
to acquire the lock and decremented when no waiting is
required. If the statistics counter in a base node reaches a
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(a) Initial CA tree (b) CA tree after a split (c) CA tree after a join

Figure 2 Effect of the split and join operations on the CA tree of Figure 2a.

certain threshold, the items stored in the base node are split between two new base nodes to
reduce the contention; see Figure 2a and Figure 2b. In the reverse direction, if the statistics
counter in a base node reaches the threshold for low contention adaption, the items in the
base node and a neighbor base node are joined into one new base node; see Figure 2a and
Figure 2c. Base nodes also have a valid flag (depicted by 3 and 7) which is used to indicate
if a base node is in the CA tree or if it has been removed. Operations that end up in an
invalid (7) base node need to retry the search until they end up in a valid (3) base node.
Routing nodes also have a valid flag and a lock that are only used rarely during the low
contention optimizing join. Range queries are performed in CA trees by first finding and
locking the base node containing the first key in the range and then traversing and locking
subsequent base nodes until a base node containing a key which is equal to or greater than
the largest key in the range is found.

An optimization that has been shown to greatly enhance performance of read operations
(lookup and range query) is to let read operations optimistically attempt to do their operation
without writing to shared memory [18, 19]. This can be done by using a sequence lock [11]
as base node lock. A sequence lock has an operation to read a sequence number from the
lock. If a thread gets the same even sequence number from two calls of this operation, then
the sequence lock guarantees that the lock has not been acquired between the two calls. An
optimistic attempt of a read operation first scans the sequence numbers and checks the valid
flags of the base nodes that the operation needs to read data from, and then performs the
operation, after which the sequence numbers from the locks have to be checked again to
make sure that the sequence numbers match the previously read sequence numbers. If the
optimistic attempt fails, the operation is done by acquiring the base node locks in read-mode
(several read-mode lock holders can hold the lock at the same time).

The reader is referred to the earlier papers on CA trees [18, 19, 20] for a detailed
description including pseudo-code and arguments that their operations provide linearizability,
deadlock freedom, and livelock freedom.

3 CA Tree Optimization Enabled by Immutable Data Structures

By using a mutable reference to an immutable data structure as a CA tree’s sequential data
structure, it is straightforward to reduce the amount of time that read operations spend
on reading shared mutable data. Assuming that the CA tree’s sequential data structure
component is implemented with a mutable reference to an immutable data structure, a lookup
or range query operation only needs to copy the values of the references that are needed
by the operation while traversing shared mutable data. The immutable data structures
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7:4 Faster Concurrent Range Queries in CA Trees Using Immutable Data Structures

referenced by the copied references are then traversed after the base node locks have been
unlocked (or after the second sequence number scan). Especially for range queries, this
optimization can give a large reduction of the amount of time which is spent on reading
shared mutable data as the time that range queries need to spend on traversing the sequential
data structures is at least linear in the number of items in the range. With the optimization,
range queries may only need to traverse a few base nodes (one in the best case) while reading
shared mutable data even when the number of items in the range is large.

It is straightforward to see that this optimization does not jeopardize correctness as the
result of a read operation would be the same if the traversal of the sequential data structures
happened instantly at the linearization point (due to the immutability of the data structures
referenced by the copied references).

4 The Implementation of the Optimized CA Tree

To experimentally evaluate the optimization described in the previous section, a CA tree
using a mutable reference to an immutable treap [21] as its sequential data structure has
been implemented in Java. A treap is a self-balancing binary search tree with expected time
complexity of O(logn) for insert, remove and lookup and an expected time complexity of
O(logn+r) for range queries, where n is the number of items stored in the data structure and
r is the number of items in the range. The treap also has efficient split and join operations [21]
which is important for the CA tree’s low and high contention adaptions [18]. To facilitate
cache friendly range queries, the treap implementation stores all items in fat leaf nodes
containing arrays that can store up to 64 items.

One heuristic, that CA trees use to reduce the time that future similar range queries need
to spend on traversing base nodes, is to decrement the contention statistics counters in the
locks of base nodes needed by a range query, if more than one base node is needed; cf. [19].
With the optimization described in the previous section in place, the portion of a range query
that is spent on traversing shared mutable data is even more affected by the number of base
nodes that the range query needs to access than without the optimization. The reason for
this is that the optimization moves the traversal of the sequential data structures from within
the period that is spent on reading shared mutable data to after this period. It therefore
makes sense to decrement the contention statistics counters with a larger value, when the
optimization is used, as the potential benefit for similar range queries is larger than without
the optimization. Indeed, experiments show that changing the heuristic to decrement by
the value 100 instead of the value one (which is used by the old CA tree implementations)
gives significantly better performance in scenarios with large range queries. Except for the
change of the value used to decrement the statistics counters in the described heuristic, the
immutable treap version of the CA tree has the same constants and thresholds for low and
high contention adaptions as described in the previous work [19].

5 Related Work

The CA tree is the only one of the previously proposed approaches for linearizable range
queries [4, 5, 2, 17, 7, 3] that dynamically changes the synchronization granularity to optimize
for the conflicting requirements of range queries of different sizes and single-key operations [19].

The SnapTree by Bronson et al. [4] has an efficient linearizable clone operation that
returns a copy of the data structure from which a range query operation can easily be derived.
SnapTree’s clone operation waits for active update operations and forces subsequent update
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operations to copy nodes lazily before node modifications so that the copy is not modified.
The behavior of SnapTree resembles the behavior of the data structure implemented from a
single mutable reference to an immutable data structure (that is discussed in Section 1) when
range queries are common. The SnapTree can thus serve as an example of the coarse-grained
approach for doing range queries.

The lock-free k-ary search tree is an unbalanced external search tree with up to k keys
stored in every node [6]. Range queries in k-ary search trees are performed by doing a read
scan and a validation scan of the immutable leaf nodes containing items in the range [5]. The
range query operation needs to retry if the validation scan fails. The k-ary is an example
of the fine-grained approach discussed in Section 1. Another example of this fine-grained
approach based on software transactional memory is the Leaplist [2].

Chatterjee has proposed a general method for doing range queries in lock-free ordered set
data structures [7] based on the work by Erez and Shahar [15]. Unfortunately, the scalability
of Chatterjee’s method suffers from the global sequential hot spot in the list of range-collector
objects that all range queries have to write to in the worst case.

The KiWi data structure by Basin et al. [3] supports wait-free range queries and lookup
operations as well as lock-free update operations. Update operations help range queries by
storing multiple versions of inserted items when it is needed for the range queries. Similarly
to Robertson’s data structure [17], KiWi’s range queries atomically increment a global version
counter which is used by update operations to decide if storing an additional version is
necessary. KiWi’s global version number counter is bound to become a scalability bottleneck
with a high enough level of parallelism. Similarly to the treap based CA tree, KiWi tries to
improve cache locality by storing items in arrays that can store up to k items.

A fundamental difference between the other efficient methods for range queries in ordered
set data structures and the optimized CA tree is the time spent by range queries reading
shared mutable data and thus the time in which conflicts with update operations can happen.
In the other methods [5, 2, 17, 19, 7, 3], this time is at least linear in the number of items
inside the range while the optimized CA tree can do much better as is described in Section 3.

6 Evaluation

We now experimentally evaluate the optimized CA tree implementation using the immutable
treap described in Section 4 (Im-Tr-CA). Im-Tr-CA will be compared to the recently pro-
posed methods for doing linearizable range queries in ordered sets: SnapTree [4], k-ary [5],
Chatterjee’s method applied to a lock-free skiplist [7] (ChatterjeeSL), KiWi [3] and the two
CA tree variants that use a mutable skiplist with fat nodes (SL-CA) and a mutable AVL
tree (AVL-CA) as sequential data structures [19]. The lock-free skiplist, called Concurrent-
SkipListMap, from the Java library that only supports range queries that are not linearizable
(NonAtomicSL) is also included in the comparison. All data structures were provided by
their respective authors and are implemented in Java. The maximum number of items in
the nodes (k) is set to 64 for k-ary, Im-Tr-CA and SL-CA as this value has previously been
shown to give good results [5]. KiWi’s constants are set as described in the KiWi paper [3].

The benchmarks were run on a machine with four Intel(R) Xeon(R) E5-4650 CPUs
(2.70GHz each with eight cores and hyperthreading, giving a total of 32 actual and 64 logical
cores), turbo boost turned off, 128GB of RAM, running Linux 3.16.0-4-amd64 and Oracle
JVM 1.8.0_131 (with the JVM flags -Xmx8g -Xms8g -XX:+UseCondCardMark -server -d64).
Each data point comes from the average of three measurements runs of 10 seconds each that
were preceded by 3 warm up runs, also of 10 seconds each. The purpose of the warm up runs
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is to give the just-in-time compiler enough time to compile the code. Error bars showing the
minimum and maximum measurements are displayed when they are large enough to be seen.

The keys for the operations lookup, insert and remove as well as the starting keys for
range queries are randomly generated from a range of size S. The data structure is pre-filled
before the start of each benchmark run by performing S/2 random insert operations. In all
experiments presented in the main part of this paper S = 106. The interested reader can
find results for S = 105 and S = 107 in the appendix of this paper. Range queries calculate
the sum of the items in the range and the number of items in the range. As a sanity check,
the average number of items that are traversed per range query is calculated and checked
against the expected value.

The Random Operations Benchmark This benchmark measures throughput of a mix of
operations performed by N threads. In all captions, benchmark scenarios are described
by strings of the form w:A% r:B% q:C%-R, meaning that the benchmark performs (A/2)%
insert, (A/2)% remove, B% lookup operations and C% range queries of maximum range size
R. The range sizes are randomly set to values between 1 and R.

Figure 3 shows the results from three scenarios with increasing range sizes. In the scenario
with small range queries of maximum size 10 (Figure 3a), the best performing data structures
(the CA trees and k-ary) are almost indistinguishable. ChatterjeeSL and KiWi that have a
global scalability bottleneck, as explained in the previous section, both scale worse in this
scenario. Im-Tr-CA scales well in this scenario due to its ability to adapt the sizes of its
immutable parts but does not get much benefit from its quick traversal of shared mutable
data as conflicts between threads are rare for all data structures in this scenario.

Conflicts are still relatively rare in the scenario with range queries of maximum size 1000
(Figure 3b). The top performing data structures in this scenario (Im-Tr-CA, SL-CA, KiWi
and k-ary) are those with cache locality friendly nodes that store several items in arrays.
However, Im-Tr-CA and SL-CA, that adapt their synchronization granularity to the scenario
at hand, outperform KiWi and k-ary with a wide margin in this scenario.

The scenario that has large range queries of maximum size 100000 (Figure 3c) shows the
distinguishing feature of Im-Tr-CA that outperforms all the other data structures with a
large margin. Conflicts between range queries and update operations are very likely with
these large range queries but the conflicts are significantly less costly in Im-Tr-CA due to its
short critical sections, as is explained in Section 3.
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Figure 3 Throughput (operations/µs) on the y-axis and thread count on the x-axis.
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Figure 4 Results for benchmark with separate threads doing updates and range queries.

Separate Threads for Range Queries and Updates Most of the time is spent doing range
queries when large range queries are used in the random operations benchmark. Thus, another
benchmark is needed to measure the data structures’ ability to handle large range queries
concurrently with frequent update operations. To this end, we use a similar benchmark
to the one developed by the KiWi authors. This benchmark is motivated by large scale
applications that require quick updates of a data set while other threads do large linearizable
range queries concurrently (for analytics) [3]. In this benchmark, half the threads do update
operations (insert and remove with equal probability) while the other half do range queries
with a range of fixed size. The throughput for updates is presented separately from the range
query throughput so that one can study the performance of these operations separately. Note
that in the graphs that show the range query throughput, the number of operations per µs
multiplied by the range query size is shown on the y-axis to make the graphs more readable.

Figure 4a and Figure 4c show the results of this benchmark with a range query size of
32K and with varying thread counts. In Figure 4b and Figure 4d, the thread count is fixed
to 32 (16 updaters and 16 threads doing range queries) and the x-axis shows varying range
query sizes. First of all, Im-Tr-CA with its short range query critical section is overall the
fastest data structure in the scenarios. KiWi is the second most performant data structure in
the scenarios with range query sizes larger than 2000. The bumpy performance of CA-SL in
Figure 4b can be explained by the fact that the range queries acquire the base node locks in
read-mode which enables concurrent range queries to bypass waiting update operations and
take over the lock. CA-SL thus provides good throughput for range queries with a range size
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7:8 Faster Concurrent Range Queries in CA Trees Using Immutable Data Structures

of 512 because conflicts are rare and with a range size of 128K as “conflicts” with other range
queries that have already acquired the relevant base nodes are common. ChatterjeeSL’s and
KiWi’s update operations need to read the RangeCollector list (ChatterjeeSL) or the global
version number (KiWi) which are updated by range queries. The more frequent updates of
these global objects with smaller range queries can explain the slight partial upward trend
that exists for ChatterjeeSL and KiWi in Figure 4d. k-ary’s range queries are starved by
update operations in the scenarios with large range queries. The SnapTree’s operations are
slow in most scenarios due to its coarse-grained approach for doing range queries, but the
SnapTree’s performance is better in scenarios with larger and less frequent range queries.

Table 1 shows the average number of base nodes and the number of base nodes traversed
per range query in Im-Tr-CA after the benchmark runs of the scenarios displayed in Figure 4b
and Figure 4d. It is evident from the table data that Im-Tr-CA’s range queries spend a very
short time traversing shared mutable data even for large range queries (e.g. approximately
the time it takes to traverse 13 base nodes in the case with range queries of size 32K). After
the base nodes have been traversed, the collected immutable data can be traversed without
any need to care about other threads and without disturbing other threads.

Table 1 Statistics for Im-Tr-CA in the scenarios displayed in Figure 4b and Figure 4d.

Range Size 2 4 8 32 128 512 2K 8K 32K 128K
# base nodes 2.5K 2.1K 1.7K 1.0K 590 390 310 310 390 430

# traversed base nodes
# range queries 1.0 1.0 1.0 1.0 1.1 1.2 1.6 3.5 13 56

7 Conclusion

A new CA tree variant that makes use of an immutable data structure has been presented.
The advantage of the new CA tree variant over the CA tree variants that use mutable data
structures as the sequential data structure component is that the new variant drastically
reduces the time period in which conflicts between large range queries and other operations can
happen. Compared to all other data structures with linearizable range query support, the CA
trees have the advantage that they dynamically adapt the synchronization granularity to fit the
workload at hand. The experimental comparison shows that the presented implementation’s
quick traversal of shared mutable data and cache friendly design makes the implementation
outperform the best of the other data structures with a wide margin in scenarios with large
range queries. Furthermore, the new CA tree variant also performs better or close to the
best of the other data structures in scenarios with small range queries due to its ability to
dynamically change its synchronization granularity. As future work, we plan to design and
evaluate a lock-free CA tree variant. A lock-free CA tree variant could potentially give even
better performance as it could avoid priority inversions and other lock related problems.

Acknowledgments Vincent Gramoli gave me the idea of looking into immutable data
structures in combination with the CA tree. Amelie Lind, Martin Viklund, Stephan Brand-
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A Source Code

The source code for the CA tree implementations and the benchmarks can be found online
(https://www.it.uu.se/research/group/languages/software/im_tr_ca).

B Results with Other Set Sizes

Results corresponding to the results in figures 3 and 4 but with smaller set sizes (the key
range size S = 105) can be found in figures 5 and 6. The corresponding results for larger set
sizes (S = 107) can be found in figures 7 and 8. The statistics corresponding to the statistics
in Table 1 but with the smaller and larger set sizes can be found in tables 2 and 3.

In the cases with the smallest set size (S = 105), the ranges of size 32K and 128K span
32% and 100% of the set represented by the data structures; see Figure 6. Im-Tr-CA’s range
queries lock out update operations from the portion of the set that is covered by the range
query. Even though this only happens for a short period of time as Table 2 shows, it still
has a negative effect on update operations as Figure 6d shows. This is compensated by
Im-Tr-CA’s excellent performance for range queries in these scenarios as Figure 6b shows.

In the cases with the largest set size (S = 107), the ranges span a smaller part of the sets
represented by the data structures which explains why many of the other data structures are
closer to Im-Tr-CA in these scenarios; see figures 7 and 8.
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Table 2 Statistics for Im-Tr-CA in the scenarios displayed in Figure 6b and Figure 6d.

Range Size 2 4 8 32 128 512 2K 8K 32K 128K
# base nodes 890 720 570 330 190 120 97 130 90 96

# traversed base nodes
# range queries 1.0 1.0 1.1 1.1 1.2 1.6 3.0 11 27 98

Table 3 Statistics for Im-Tr-CA in the scenarios displayed in Figure 8b and Figure 8d.

Range Size 2 4 8 32 128 512 2K 8K 32K 128K
# base nodes 6.0K 5.3K 4.5K 2.9K 1.8K 1.2K 900 860 1.0K 1.1K

# traversed base nodes
# range queries 1.0 1.0 1.0 1.0 1.0 1.1 1.2 1.7 4.2 15
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Figure 5 Results with key range of size 105 which corresponds to a set size of approximately
5 × 104. Throughput (operations/µs) on the y-axis and thread count on the x-axis.
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(a) Range queries, range size 32K (parallel updates)
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(b) Range queries 16 threads (parallel updates)
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(c) Updates (parallel range queries, range size 32K)
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Figure 6 Results for benchmark with separate threads doing updates and range queries with key
range of size 105 which corresponds to a set size of approximately 5 × 104.
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Figure 7 Results with key range of size 107 which corresponds to a set size of approximately
5 × 106. Throughput (operations/µs) on the y-axis and thread count on the x-axis.
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(a) Range queries, range size 32K (parallel updates)
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(b) Range queries 16 threads (parallel updates)
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(c) Updates (parallel range queries, range size 32K)
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Figure 8 Results for benchmark with separate threads doing updates and range queries with key
range of size 107 which corresponds to a set size of approximately 5 × 106.
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