
Faster Concurrent Range Queries with
Contention Adapting Search Trees Using

Immutable Data

Kjell Winblad

Department of Information Technology
Uppsala University, Sweden

2017 Imperial College Computing Student Workshop
(ICCSW’2017), Sep 26-27, 2017



Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Overview
Background (Concurrent Data Structures)
Contribution (New concurrent data structure)
Related Work and Evaluation
Conclusion
Questions

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 2 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Background
Parallel processors (multicores) are everywhere

Scalable Concurrent Data Structures:
• Queues, Priority Queues, Sets, etc
• Operating systems, Databases, Parallel algorithms
• fine-grained locks, lock-free techniques

Our focus:
Ordered Sets with support for linearizable range queries

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 3 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Background
Parallel processors (multicores) are everywhere
Scalable Concurrent Data Structures:

• Queues, Priority Queues, Sets, etc
• Operating systems, Databases, Parallel algorithms
• fine-grained locks, lock-free techniques

Our focus:
Ordered Sets with support for linearizable range queries

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 3 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Background
Parallel processors (multicores) are everywhere
Scalable Concurrent Data Structures:

• Queues, Priority Queues, Sets, etc

• Operating systems, Databases, Parallel algorithms
• fine-grained locks, lock-free techniques

Our focus:
Ordered Sets with support for linearizable range queries

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 3 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Background
Parallel processors (multicores) are everywhere
Scalable Concurrent Data Structures:

• Queues, Priority Queues, Sets, etc
• Operating systems, Databases, Parallel algorithms

• fine-grained locks, lock-free techniques
Our focus:
Ordered Sets with support for linearizable range queries

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 3 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Background
Parallel processors (multicores) are everywhere
Scalable Concurrent Data Structures:

• Queues, Priority Queues, Sets, etc
• Operating systems, Databases, Parallel algorithms
• fine-grained locks, lock-free techniques

Our focus:
Ordered Sets with support for linearizable range queries

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 3 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Background
Parallel processors (multicores) are everywhere
Scalable Concurrent Data Structures:

• Queues, Priority Queues, Sets, etc
• Operating systems, Databases, Parallel algorithms
• fine-grained locks, lock-free techniques

Our focus:
Ordered Sets with support for linearizable range queries

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 3 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Concurrent Ordered Sets with support for linearizable
range queries

Ordered set
• Represents a set of items with ordered keys
• Operations: insert item, remove item, lookup item

Linearizable range query operation
• atomic snapshot of all entries with keys in a range

Important for:
• Big scale databases and data processing platforms

I Fast updates to store incoming data
I Concurrent range queries for analytics

Challenging
• Large range queries + updates = many collisions

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 4 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Concurrent Ordered Sets with support for linearizable
range queries

Ordered set
• Represents a set of items with ordered keys
• Operations: insert item, remove item, lookup item

Linearizable range query operation
• atomic snapshot of all entries with keys in a range

Important for:
• Big scale databases and data processing platforms

I Fast updates to store incoming data
I Concurrent range queries for analytics

Challenging
• Large range queries + updates = many collisions

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 4 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Concurrent Ordered Sets with support for linearizable
range queries

Ordered set
• Represents a set of items with ordered keys
• Operations: insert item, remove item, lookup item

Linearizable range query operation
• atomic snapshot of all entries with keys in a range

Important for:
• Big scale databases and data processing platforms

I Fast updates to store incoming data
I Concurrent range queries for analytics

Challenging
• Large range queries + updates = many collisions

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 4 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Concurrent Ordered Sets with support for linearizable
range queries

Ordered set
• Represents a set of items with ordered keys
• Operations: insert item, remove item, lookup item

Linearizable range query operation
• atomic snapshot of all entries with keys in a range

Important for:
• Big scale databases and data processing platforms

I Fast updates to store incoming data
I Concurrent range queries for analytics

Challenging
• Large range queries + updates = many collisions

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 4 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Coarse-grained – Mutable reference to immutable data

80

74

40

31 90

85

84

3413 998781

Im
m

ut
ab

le
 d

at
a

Mutable
reference

80

74

40

31 90

85

84

3413 99878160

Herlihy [PPoPP’90]
(general method)
SnapTree [PPoPP’10]

Fine-grained – Immutable leaf nodes

k-ary [PODC’11]
Leaplist [PODC’13]

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 5 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Fine-grained vs Coarse-grained – Trade-off

1 2 4 8 16 32 64
Number of Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Th

ro
ug

hp
ut

 (o
pe

ra
tio

ns
/μ

s)
Small Range Queries

k-ary
(Fine-Grained)
CAS-Im-Treap
(Coarse-Grained)

(a) Average #items/query ≈ 5

1 2 4 8 16 32 64
Number of Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/μ
s)

Large Range Queries

(b) Average #items/query ≈ 50K

Figure: 10% puts, 10% removes, 55% get, 25% range queries,
≈ 500K items

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 6 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Contribution
New concurrent ordered set with linearizable range queries

• Dynamically adapt the sizes of its immutable parts
I Contention
I Number of items covered by range queries

• Attempt to get the best of:
I Coarse-grained approach
I Fine-Grained approach

• Based on:
Contention Adapting Search Trees (CA trees)
ISPDC’15, and LCPC’15

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 7 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Contribution
New concurrent ordered set with linearizable range queries

• Dynamically adapt the sizes of its immutable parts
I Contention
I Number of items covered by range queries

• Attempt to get the best of:
I Coarse-grained approach
I Fine-Grained approach

• Based on:
Contention Adapting Search Trees (CA trees)
ISPDC’15, and LCPC’15

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 7 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Contribution
New concurrent ordered set with linearizable range queries

• Dynamically adapt the sizes of its immutable parts
I Contention
I Number of items covered by range queries

• Attempt to get the best of:
I Coarse-grained approach
I Fine-Grained approach

• Based on:
Contention Adapting Search Trees (CA trees)
ISPDC’15, and LCPC’15

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 7 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

CA Tree Structure

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 8 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

CA Tree Animation

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 9 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

CA Tree Animation

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 9 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

CA Tree Animation

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 9 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

CA Tree Animation

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 9 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

CA Tree Animation

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 9 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

CA Tree Animation

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 9 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

CA Tree Animation

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 9 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

CA Tree Animation

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 9 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Range Queries in CA trees (the old way)
1 Find base node containing first key in the range
2 Travese to and lock subsequent base nodes

• Until base node with key greater than end of range
or until the last base node has been found

3 Perform range query in sequential data structures
4 Unlock base node locks and

decrease statistics counters if more than one base node

/
Long time period in
which conflicts can

happen

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 10 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Range Queries in CA trees (the new way)
Implement sequential data structure as a mutable
reference to an immutable data structure

1 Find base node containing first key in the range
2 Traverse to and lock subsequent base nodes

• Until base node with key greater than end of range
or until the last base node has been found

3 Perform range query in sequential data structures
Copy references to sequential data structures

4 Unlock base node locks and
decrease statistics counters if more than one base node

5 Perform range query in the sequential data structures

, Much shorter time period for conflicts

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 11 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Implementation
Immutable Treap (balanced binary search tree)
items stored in fat leaf nodes

• Up to 64 items in arrays
• Improves cache locality

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 12 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

How does the new method perform?

1 2 4 8 16 32 64
Number of Threads

0

5

10

15

20

25
Th

ro
ug

hp
ut

 (o
pe

ra
tio

ns
/μ

s)

Small Range Queries

k-ary
(Fine-Grained)
CAS-Im-Treap
(Coarse-Grained)
Im-Tr-CA
(New Structure)

(a) Average #items/query ≈ 5

1 2 4 8 16 32 64
Number of Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/μ
s)

Large Range Queries

(b) Average #items/query ≈ 50K

Figure: 10% puts, 10% removes, 55% get, 25% range queries,
≈ 500K items

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 13 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Fine-Grained Approach
k-ary – up to k items in immutable leaf nodes
Brown and Avni [PODC’11]

Coarse-Grained Approach
SnapTree – Fast snapshots based on copy-on-write
Bronson, Casper, Chafi and Olukotun [PPoPP’10]

Others
Old CA tree – items in mutablbe Skiplists with fat nodes
Saganos, and Winblad [LCPC’15]
KiWi – Global version number counter for range queries
Basin et al. [PPoPP’17]
See paper for more related work... (Bronson [PPoPP’10],
Avni et al. [PODC’13], Chatterjee [ICDCN’17])

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 14 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Evaluation

Benchmark with a mix of
• Inserts
• Removes
• Lookups
• Range Queries of size up to max

Platform
• NUMA with four Intel Xeon E5-4650 CPUs (2.70GHz)

8 cores each with hypherthreading = 64 logical cores
Implementation in Java
See paper for other benchmark and more data structures...

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 15 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

1 2 4 8 16 32 64
Number of Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/μ
s)

Small Range Queries

k-ary
CAS-Im-Treap
KiWi
NonAtomicSL
SL-CA
Im-Tr-CA
(New Structure)

≈ 500K items, Inserts:10%, Removes:10%, Lookups:55%,
Queries:25%-max:10

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 16 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

1 2 4 8 16 32 64
Number of Threads

0.0

2.5

5.0

7.5

10.0

12.5

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/μ
s)

Medium Sized Range Queries

k-ary
CAS-Im-Treap
KiWi
NonAtomicSL
SL-CA
Im-Tr-CA
(New Structure)

≈ 500K items, Inserts:10%, Removes:10%, Lookups:55%,
Queries:25%-max:1000

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 17 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

1 2 4 8 16 32 64
Number of Threads

0.0

0.2

0.4

0.6

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/μ
s)

Large Range Queries

k-ary
CAS-Im-Treap
KiWi
NonAtomicSL
SL-CA
Im-Tr-CA
(New Structure)

≈ 500K items, Inserts:10%, Removes:10%, Lookups:55%,
Queries:25%-max:100000

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 18 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Final Remarks
CA trees

• Key advantage:
Adapts to contention and range queries

New CA tree variant using Immutable Data

80

74

40

31 90

85

84

3413 998781

Im
m

ut
ab

le
 d

at
a

Mutable
reference

80

74

40

31 90

85

84

3413 99878160

• Quick traverse of shared mutable data
I Conflicts less costly

• Scales much better than old variants and related work

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 19 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Contention Statistics Collecting Lock
struct StatLock {
Lock lock;
int statistics;

}

void statLock(StatLock slock) {
if (tryLock(slock.lock)) {
slock.statistics -= SUCCESS_CONTRIBUTION;
return;

}
lock(slock.lock);
slock.statistics += FAIL_CONTRIBUTION;

}

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 20 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree


Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Contention Adaptation
...
statLock(base.lock)

performOperation(base.root, parameters...);

if (base.lock.statistics > MAX_CONTENTION) {
highContentionSplit(tree, base, prevNode);

} else if (base.lock.statistics < MIN_CONTENTION) {
lowContentionJoin(tree, base, prevNode);

}
statUnlock(base.lock)

Sep 26-27, 2017
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data - 21 -
http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

	Introduction
	Contribution
	CA Tree
	New method
	Related work
	Evaluation
	Final Remarks

