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Background
Parallel processors (multicores) are everywhere

Scalable Concurrent Data Structures:
• Queues, Priority Queues, Sets, etc
• Operating systems, Databases, Parallel algorithms
• fine-grained locks, lock-free techniques

Our focus:
Ordered Sets with support for linearizable range queries
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Concurrent Ordered Sets with support for linearizable
range queries

Ordered set
• Represents a set of items with ordered keys
• Operations: insert item, remove item, lookup item

Linearizable range query operation
• atomic snapshot of all entries with keys in a range

Important for:
• Big scale databases and data processing platforms

I Fast updates to store incoming data
I Concurrent range queries for analytics

Challenging
• Large range queries + updates = many collisions
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Coarse-grained – Mutable reference to immutable data
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Herlihy [PPoPP’90]
(general method)
SnapTree [PPoPP’10]

Fine-grained – Immutable leaf nodes

k-ary [PODC’11]
Leaplist [PODC’13]
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Fine-grained vs Coarse-grained – Trade-off
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(a) Average #items/query ≈ 5
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(b) Average #items/query ≈ 50K

Figure: 10% puts, 10% removes, 55% get, 25% range queries,
≈ 500K items
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Contribution
New concurrent ordered set with linearizable range queries

• Dynamically adapt the sizes of its immutable parts
I Contention
I Number of items covered by range queries

• Attempt to get the best of:
I Coarse-grained approach
I Fine-Grained approach

• Based on:
Contention Adapting Search Trees (CA trees)
ISPDC’15, and LCPC’15
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CA Tree Structure
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Range Queries in CA trees (the old way)
1 Find base node containing first key in the range
2 Travese to and lock subsequent base nodes

• Until base node with key greater than end of range
or until the last base node has been found

3 Perform range query in sequential data structures
4 Unlock base node locks and

decrease statistics counters if more than one base node

/
Long time period in
which conflicts can

happen
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Range Queries in CA trees (the new way)
Implement sequential data structure as a mutable
reference to an immutable data structure

1 Find base node containing first key in the range
2 Traverse to and lock subsequent base nodes

• Until base node with key greater than end of range
or until the last base node has been found

3 Perform range query in sequential data structures
Copy references to sequential data structures

4 Unlock base node locks and
decrease statistics counters if more than one base node

5 Perform range query in the sequential data structures

, Much shorter time period for conflicts
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Implementation
Immutable Treap (balanced binary search tree)
items stored in fat leaf nodes

• Up to 64 items in arrays
• Improves cache locality
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How does the new method perform?
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(a) Average #items/query ≈ 5
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(b) Average #items/query ≈ 50K

Figure: 10% puts, 10% removes, 55% get, 25% range queries,
≈ 500K items
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Fine-Grained Approach
k-ary – up to k items in immutable leaf nodes
Brown and Avni [PODC’11]

Coarse-Grained Approach
SnapTree – Fast snapshots based on copy-on-write
Bronson, Casper, Chafi and Olukotun [PPoPP’10]

Others
Old CA tree – items in mutablbe Skiplists with fat nodes
Saganos, and Winblad [LCPC’15]
KiWi – Global version number counter for range queries
Basin et al. [PPoPP’17]
See paper for more related work... (Bronson [PPoPP’10],
Avni et al. [PODC’13], Chatterjee [ICDCN’17])
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Evaluation

Benchmark with a mix of
• Inserts
• Removes
• Lookups
• Range Queries of size up to max

Platform
• NUMA with four Intel Xeon E5-4650 CPUs (2.70GHz)

8 cores each with hypherthreading = 64 logical cores
Implementation in Java
See paper for other benchmark and more data structures...
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(New Structure)

≈ 500K items, Inserts:10%, Removes:10%, Lookups:55%,
Queries:25%-max:10
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CAS-Im-Treap
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(New Structure)

≈ 500K items, Inserts:10%, Removes:10%, Lookups:55%,
Queries:25%-max:1000
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k-ary
CAS-Im-Treap
KiWi
NonAtomicSL
SL-CA
Im-Tr-CA
(New Structure)

≈ 500K items, Inserts:10%, Removes:10%, Lookups:55%,
Queries:25%-max:100000
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Final Remarks
CA trees

• Key advantage:
Adapts to contention and range queries

New CA tree variant using Immutable Data
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• Quick traverse of shared mutable data
I Conflicts less costly

• Scales much better than old variants and related work
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Contention Statistics Collecting Lock
struct StatLock {
Lock lock;
int statistics;

}

void statLock(StatLock slock) {
if (tryLock(slock.lock)) {
slock.statistics -= SUCCESS_CONTRIBUTION;
return;

}
lock(slock.lock);
slock.statistics += FAIL_CONTRIBUTION;

}
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Contention Adaptation
...
statLock(base.lock)

performOperation(base.root, parameters...);

if (base.lock.statistics > MAX_CONTENTION) {
highContentionSplit(tree, base, prevNode);

} else if (base.lock.statistics < MIN_CONTENTION) {
lowContentionJoin(tree, base, prevNode);

}
statUnlock(base.lock)
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