Faster Concurrent Range Queries with
Contention Adapting Search Trees Using
Immutable Data

Kjell Winblad

Department of Information Technology

Uppsala University, Sweden

2017 Imperial College Computing Student Workshop
(ICCSW'2017), Sep 26-27, 2017

UPPSALA
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

m Background (Concurrent Data Structures)

m Contribution (New concurrent data structure)
m Related Work and Evaluation

m Conclusion

|

Questions

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data

ST LBV Y @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Introduction

Background

Contribution m Parallel processors (multicores) are everywhere
CA Tree

New method

Related work

Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST Iy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Introduction

Contribution m Parallel processors (multicores) are everywhere
CA Tree

m Scalable Concurrent Data Structures:

New method
Related work
Evaluation

Final Remarks

Background

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST Iy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

SALA
UNIVERSITET

Introduction

Contribution m Parallel processors (multicores) are everywhere
CA Tree

m Scalable Concurrent Data Structures:
e Queues, Priority Queues, Sets, etc

New method
Related work
Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST Iy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

SALA
UNIVERSITET

Introduction

Contribution m Parallel processors (multicores) are everywhere
CA Tree

m Scalable Concurrent Data Structures:

e Queues, Priority Queues, Sets, etc
e Operating systems, Databases, Parallel algorithms

New method

Related work

Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST Iy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

SALA
UNIVERSITET

Introduction

Contribution m Parallel processors (multicores) are everywhere
CA Tree

m Scalable Concurrent Data Structures:
e Queues, Priority Queues, Sets, etc
e Operating systems, Databases, Parallel algorithms
e fine-grained locks, lock-free techniques

New method

Related work

Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST Iy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

m Parallel processors (multicores) are everywhere
m Scalable Concurrent Data Structures:
e Queues, Priority Queues, Sets, etc
e Operating systems, Databases, Parallel algorithms
e fine-grained locks, lock-free techniques
m Our focus:
Ordered Sets with support for linearizable range queries

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data

ST Iy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Concurrent Ordered Sets with support for linearizable
range queries

Introduction] O rd e I’ed set

Contribution

o Represents a set of items with ordered keys
e Operations: insert item, remove item, lookup item

CA Tree

New method

Related work

Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LYY @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Concurrent Ordered Sets with support for linearizable
range queries

m Ordered set

o Represents a set of items with ordered keys
e Operations: insert item, remove item, lookup item

m Linearizable range query operation
e atomic snapshot of all entries with keys in a range

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data

ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Concurrent Ordered Sets with support for linearizable
range queries

m Ordered set

o Represents a set of items with ordered keys

e Operations: insert item, remove item, lookup item
m Linearizable range query operation

e atomic snapshot of all entries with keys in a range
m Important for:

e Big scale databases and data processing platforms

» Fast updates to store incoming data
» Concurrent range queries for analytics

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data

ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Concurrent Ordered Sets with support for linearizable
range queries
m Ordered set

o Represents a set of items with ordered keys
e Operations: insert item, remove item, lookup item

m Linearizable range query operation

e atomic snapshot of all entries with keys in a range
m Important for:

e Big scale databases and data processing platforms

» Fast updates to store incoming data
» Concurrent range queries for analytics

m Challenging
e Large range queries + updates = many collisions

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data

ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Mutable ,
reference:

Introduction

m Herlihy [PPoPP'90]

Contribution \;\f%’?// (general method)
CA Tree & m SnapTree [PPoPP'10]

7
/

New method ,’@_:5
|

Related work

Coarse-grained — Mutable reference to immutable data

v

Evaluation

Final Remarks

m k-ary [PODC'11]
m Leaplist [PODC'13]

PR}

Immutable leaf nodes

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Fine-grained vs Coarse-grained — Trade-off

Throughput (operations/us)

Small Range Queries

17.5 A

15.0 A

12.5 A

10.0 A

7.5 1

5.0

2.5 A

0.0

k-ary
(Fine-Grained)
CAS-Im-Treap
(Coarse-Grained)

——
¥

1 2 4 8

16 32 64
Number of Threads

(a) Average #items/query ~ 5

Large Range Queries

o
o

o
wn
1

<
>
1

o
N
1

o
=
1

Throughput (operations/us)
o
w
1

o
o
1

1 2 4 8 16 32 64
Number of Threads

(b) Average #items/query ~ 50K

Figure: 10% puts, 10% removes, 55% get, 25% range queries,
~ 500K items

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data

ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

—— m New concurrent ordered set with linearizable range queries

Contribution

A T e Dynamically adapt the sizes of its immutable parts

New method » Contention

Related work > Number of items covered by range queries

Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @I http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Contribution

—— m New concurrent ordered set with linearizable range queries

Contribution

A T e Dynamically adapt the sizes of its immutable parts
Wer g » Contention

» Number of items covered by range queries
o Attempt to get the best of:

» Coarse-grained approach

» Fine-Grained approach

Related work

Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @I http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

—— m New concurrent ordered set with linearizable range queries

Contribution

A T e Dynamically adapt the sizes of its immutable parts
New method » Contention

Related work > Number of items covered by range queries
o o Attempt to get the best of:

Final Remarks » Coarse-grained approach
> Fine-Grained approach
Based on:
Contention Adapting Search Trees (CA trees)
ISPDC'15, and LCPC'15

Contribution

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @I http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

CA Tree Structure

UPPSALA
UNIVERSITET

Introduction

Contribution

CA Tree
New method

Related work

Evaluation

Final Remarks

Sequential data structures
(E.g. AVL trees)

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA CA Tree Animation
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work
Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA CA Tree Animation
UNIVERSITET

Introduction

Contribution VQ|

CA Tree

New method

Related work
Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA CA Tree Animation
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA CA Tree Animation
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA CA Tree Animation
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA CA Tree Animation
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA CA Tree Animation
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA CA Tree Animation
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Range Queries in CA trees (the old way)

Find base node containing first key in the range
Travese to and lock subsequent base nodes

e Until base node with key greater than end of range
or until the last base node has been found

Introduction

Contribution

CA Tree Perform range query in sequential data structures

New method

Unlock base node locks and
decrease statistics counters if more than one base node

Related work

Evaluation

Final Remarks

_____ o ®
____________________________ s Long time period in
o which conflicts can

happen
Sequential data structures
(E.g. AVL trees)
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data -10 -

ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Range Queries in CA trees (the new way)

m Implement sequential data structure as a mutable
reference to an immutable data structure

Introduction

Contribution Find base node containing first key in the range
CA Tree

Traverse to and lock subsequent base nodes

e Until base node with key greater than end of range
or until the last base node has been found

New method

Related work

Evaluation

Final Remarke Perform—rangequery-in—sequential-data—structures

Copy references to sequential data structures

B Unlock base node locks and
decrease statistics counters if more than one base node

Perform range query in the sequential data structures

® Much shorter time period for conflicts

ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data -11-

http://www.it.uu.se/research/group/languages/software/ca_tree

Introduction

Contribution

Implementation

CA Tree

m Immutable Treap (balanced binary search tree)
m items stored in fat leaf nodes

New method

Related work

Tl e Up to 64 items in arrays
e |Improves cache locality

Final Remarks

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data -12-
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

How does the new method perform?

Throughput (operations/us)

Small Range Queries

N
w
1

N
o
1

=
w
1

fury
o
1

w
1

k-ary
(Fine-Grained)
CAS-Im-Treap
(Coarse-Grained
\ Im-Tr-CA

(New Structur:

=¥

/0

1 2 4 8

16 32 64
Number of Threads

(a) Average #items/query ~ 5

et o
wn o

o
IS

©
N

o
Y

Throughput (operations/us)
o
w

o
<)

Large Range Queries

1 2 4 8

16 32 64
Number of Threads

(b) Average #items/query =~ 50K

Figure: 10% puts, 10% removes, 55% get, 25% range queries,
~ 500K items

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data

ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

- 13-

http://www.it.uu.se/research/group/languages/software/ca_tree

Fine-Grained Approach

UNIVERSITET

m k-ary — up to k items in immutable leaf nodes
Brown and Avni [PODC'11]

Introduction

Contribution

CA Tree

m SnapTree — Fast snapshots based on copy-on-write
Bronson, Casper, Chafi and Olukotun [PPoPP'10]

New method

Related work

Coarse-Grained Approach

Evaluation

Final Remarks
m Old CA tree — items in mutablbe Skiplists with fat nodes
Saganos, and Winblad [LCPC'15]

m KiWi — Global version number counter for range queries
Basin et al. [PPoPP’17]

m See paper for more related work... (Bronson [PPoPP'10],
Avni et al. [PODC'13], Chatterjee [I[CDCN'17])

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

Evaluation

UPPSALA
UNIVERSITET

Introduction

R m Benchmark with a mix of

CA Tree e Inserts

New method ° RemOVeS

Related work o LOOkUpS

e Range Queries of size up to max

Evaluation

Final Remarks | P|atf0rm

o NUMA with four Intel Xeon E5-4650 CPUs (2.70GHz)
8 cores each with hypherthreading = 64 logical cores

m Implementation in Java
m See paper for other benchmark and more data structures...
v
Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data -15-

ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

Small Range Queries

UNIVERSITET

T 25 1

% + k-ary
Introduction g 20] EIE CAS_Im—Treap
Contribution "é _‘_ KIWI
CA Tree ¢ 159 —@- NonAtomicSL
New method 8 10 —»— SL_CA

) -
Related work > Im'Tr‘CA
E luat ‘ < 5 - (New Structurey”
Final Remarks S

e

F 04

™ T LI DL T ' T
1 2 4 8 16 32 64
Number of Threads

~ 500K items, Inserts:10%, Removes:10%, Lookups:55%,
Queries:25%-max:10

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

Medium Sized Range Queries

12.5 +
10.0 -~ =

7.5

b e

Throughput (operations/us)

k-ary
CAS-Im-Treap
Kiwi
NonAtomicSL
SL-CA

Number of Threads

16

32

64

~ 500K items, Inserts:10%, Removes:10%, Lookups:55%,
Queries:25%-max:1000

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data

- 17 -

http://www.it.uu.se/research/group/languages/software/ca_tree

UNIVERSITET Large Range Queries

(New Struct}ce')’

Final Remarks

o
o
1

w 0.6

% + k-ary
Introduction 5 EIE CAS-Im-Treap
Contribution "é’ 04 - —‘_ K|W|
CA Tree L —@®—- NonAtomicSL
New method 8 _»_ SL_CA

4+
Related work 35

0.2 Im-Tr-CA

Evaluation g- +

(@)

3

o

e

I_

i T L L B T T
1 2 4 8 16 32 64
Number of Threads

~ 500K items, Inserts:10%, Removes:10%, Lookups:55%,
Queries:25%-max:100000

Faster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data -18 -
ST LBy @] http://www.it.uu.se/research/group/languages/software/ca_tree

http://www.it.uu.se/research/group/languages/software/ca_tree

UNIVERSITET

Introduction
Contribution m CA trees

CA Tree o Key advantage:

New method Adapts to contention and range queries

Related work

Evaluation

Final Remarks

e Quick traverse of shared mutable data

> Conflicts less costly
e Scales much better than old variants and related work

aster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data
Sep 26-27, 2017| http //www.it.uu.se/research/group/languages/software/ca_tree

-19-

http://www.it.uu.se/research/group/languages/software/ca_tree

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Contention Statistics Collecting Lock

struct StatLock {
Lock lock;
int statistics;

void statLock(StatLock slock) {
if (tryLock(slock.lock)) {
slock.statistics -= SUCCESS_CONTRIBUTION;
return;
}
lock(slock.lock);
slock.statistics += FAIL_CONTRIBUTION;

aster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data

Sep 26-27, 2017| http //www.it.uu.se/research/group/languages/software/ca_tree

-20-

http://www.it.uu.se/research/group/languages/software/ca_tree

UPPSALA
UNIVERSITET

Introduction

Contribution

CA Tree

New method

Related work

Evaluation

Final Remarks

Contention Adaptation

statLock(base.lock)
performOperation(base.root, parameters...);

if (base.lock.statistics > MAX_CONTENTION) {
highContentionSplit(tree, base, prevNode);

} else if (base.lock.statistics < MIN_CONTENTION) {
lowContentionJoin(tree, base, prevNode);

}

statUnlock(base.lock)

aster Concurrent Range Queries with Contention Adapting Search Trees Using Immutable Data

Sep 26-27, 2017| http //www.it.uu.se/research/group/languages/software/ca_tree

-21-

http://www.it.uu.se/research/group/languages/software/ca_tree

	Introduction
	Contribution
	CA Tree
	New method
	Related work
	Evaluation
	Final Remarks

