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m Ordered set

o Represents a set of items with ordered keys
e Operations: insert item, remove item, lookup item

m Linearizable range query operation

e atomic snapshot of all entries with keys in a range
m Important for:

e Big scale databases and data processing platforms

» Fast updates to store incoming data
» Concurrent range queries for analytics

m Challenging
e Large range queries + updates = many collisions
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Fine-grained vs Coarse-grained — Trade-off
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Figure: 10% puts, 10% removes, 55% get, 25% range queries,
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m k-ary — up to k items in immutable leaf nodes
Brown and Avni [PODC'11]
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m SnapTree — Fast snapshots based on copy-on-write
Bronson, Casper, Chafi and Olukotun [PPoPP'10]
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m Old CA tree — items in mutablbe Skiplists with fat nodes
Saganos, and Winblad [LCPC'15]

m KiWi — Global version number counter for range queries
Basin et al. [PPoPP’17]

m See paper for more related work... (Bronson [PPoPP'10],
Avni et al. [PODC'13], Chatterjee [I[CDCN'17])
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o NUMA with four Intel Xeon E5-4650 CPUs (2.70GHz)
8 cores each with hypherthreading = 64 logical cores

m Implementation in Java
m See paper for other benchmark and more data structures...
v
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e Quick traverse of shared mutable data

> Conflicts less costly
e Scales much better than old variants and related work
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Contention Statistics Collecting Lock

struct StatLock {
Lock lock;
int statistics;

void statLock(StatLock slock) {
if (tryLock(slock.lock)) {
slock.statistics -= SUCCESS_CONTRIBUTION;
return;
}
lock(slock.lock);
slock.statistics += FAIL_CONTRIBUTION;
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Contention Adaptation

statLock(base.lock)
performOperation(base.root, parameters...);

if (base.lock.statistics > MAX_CONTENTION) {
highContentionSplit(tree, base, prevNode);

} else if (base.lock.statistics < MIN_CONTENTION) {
lowContentionJoin(tree, base, prevNode);

}

statUnlock(base.lock)
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