Contestation Adapting Search Trees (CA trees)
A concurrent data structure for sets and maps

Why use CA trees?
- Efficient and scalable insert, remove, bulk updates, linearizable range queries etc
- Low sequential overhead
- Flexible since skip lists, AVL trees, etc. can be plugged in as sequential data structures
- Self-adapting to fit access pattern
- Very short traversal of mutable data when mutable pointer to immutable data structure is used as the sequential data structure
- Gives excellent performance for linearizable range queries (even when they are very large)

How does it work?
- Information about contention and operations that benefit from fewer base nodes is collected in the base node locks (see right)
- Splits a base node when the estimated contention is above a threshold and joins two base nodes when the estimated contention is below a threshold (see down)

Publications
- Faster Concurrent Range Queries with Contestation Adapting Search Trees Using Immutable Data, ICCSW'2017
- Efficient Support for Range Queries and Range Updates Using Contestation Adapting Search Trees, LCPC'2015
- Contestion Adapting Search Trees. ISPD'2015
- More Scalable Ordered Set for ETS Using Adaptation, ACM Workshop on Erlang, 2014

Experiments
\(w \% r \% q \% \) where \(w \% \) insert and remove operations, \(r \% \) lookup operations and \(q \% \) range queries with maximum range size \(r \). Number of items in set = 500000.

KiWi = From "KiWi: A Key-Value Map for Scalable Real-Time Analytics, PPoPP'2016"
k-ary = From "Range queries in non-blocking k-ary search trees, OPODIS'2011"
SnapTree = From "A practical concurrent binary search tree, PPoPP'2010"
ChatterjeeSL = From "Lock-free linearizable 1-dimensional range queries, ICDCC'2017"
NonAtomicSkipList = ConcurrentSkipListMap from Java's standard library
AVL-CA = CA tree using AVL tree as sequential data structure, LCPC'2015
SL-CA = CA tree using skip list with fat nodes as sequential data structure, LCPC'2015
Im-Tr-CA = CA tree using a mutable reference to immutable treap as sequential data structure (ICCSW'2017)

KiWi
- From "KiWi: A Key-Value Map for Scalable Real-Time Analytics, PPoPP'2016"

k-ary
- From "Range queries in non-blocking k-ary search trees, OPODIS'2011"

SnapTree
- From "A practical concurrent binary search tree, PPoPP'2010"

ChatterjeeSL
- From "Lock-free linearizable 1-dimensional range queries, ICDCC'2017"

NonAtomicSkipList
- ConcurrentSkipListMap from Java's standard library

AVL-CA
- CA tree using AVL tree as sequential data structure, LCPC'2015

SL-CA
- CA tree using skip list with fat nodes as sequential data structure, LCPC'2015

Im-Tr-CA
- CA tree using a mutable reference to immutable treap as sequential data structure (ICCSW'2017)