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Abstract. Efficient and scalable concurrent priority queues are crucial for the
performance of many multicore applications, e.g. for task scheduling and the
parallelization of various algorithms. Linearizable concurrent priority queues
with traditional semantics suffer from an inherent sequential bottleneck in the
head of the queue. This bottleneck is the motivation for some recently proposed
priority queues with more relaxed semantics. We present the contention avoiding
concurrent priority queue (CA-PQ), a data structure that functions as a linearizable
concurrent priority with traditional semantics under low contention, but activates
contention avoiding techniques that give it more relaxed semantics when high
contention is detected. CA-PQ avoids contention in the head of the queue by
removing items in bulk from the global data structure, which also allows it to often
serve DELMIN operations without accessing memory that is modified by several
threads. We show that CA-PQ scales well. Its cache friendly design achieves
performance that is twice as fast compared to that of state-of-the-art concurrent
priority queues on several instances of a parallel shortest path benchmark.

1 Introduction

The need for scalable and efficient data structures has increased with the number of
cores per processor chip which has steadily increased for the last decade. Concurrent
priority queues in particular are important for a wide range of parallel applications such
as task scheduling [20], branch-and-bound algorithms [10], and parallel versions of
Dijkstra’s shortest path algorithm [18]. Typically, the interface of concurrent priority
queues consists of an INSERT operation that inserts a key-value pair (called item from
here on) to the priority queue, and a DELMIN operation that removes and returns the
item with the smallest key from the priority queue. Strict (linearizable) priority queues
require that the DELMIN operation always returns an item that had the smallest key of
all items in the priority queue at some point during the operation’s execution, while
relaxed priority queues can return an item that was not the one with the minimum key.

Until quite recently, most research on concurrent priority queues has focused on
strict priority queues, e.g. [2,7,12,16–18,21]. Still, even in the 1990’s, there have been a
few papers on parallel priority queues that consider more relaxed semantics [8, 15].

Inspired by the realization that the DELMIN operation induces an inherent sequential
bottleneck in the head of strict priority queues, some recent papers have proposed relaxed
priority queues for modern multicore machines [1, 13, 19, 20]. Even though all these
proposals are successful in reducing the sequential bottleneck in the head of the priority
queue, they all have a performance problem in that all DELMIN calls access memory
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Fig. 1: The structure of a CA-PQ.

that is frequently written to by multiple threads. This is especially expensive on NUMA
machines, as it causes data to be transferred between processor chips which in turn may
cause long stalls in the processor pipeline and contention in the memory system.

In this paper, we describe a new concurrent priority called the contention avoiding
concurrent priority queue or CA-PQ for brevity. CA-PQ does not have the performance
problem mentioned above. Furthermore, CA-PQ differs from recent proposals in that it
works as a strict priority queue when contention is low. Its semantics is relaxed only when
operations frequently observe contention. Previously proposed relaxed priority queues
have relaxed semantics even when this is not motivated by high contention. This is a
problem because unnecessary use of relaxed semantics causes items with high priority
to be ignored by DELMIN, which can cause unnecessary computations and performance
degradation in some applications. Finally, in contrast to related work, CA-PQ has two
contention avoidance mechanisms that are activated separately: one to avoid contention
in DELMIN operations and one to avoid contention in INSERT operations.

Using a parallel program that computes the single source shortest paths on a graph, a
benchmark which is representative for many best-first search algorithms that use priority
queues, we compare CA-PQ’s performance with that of other state-of-the-art concurrent
priority queues. As we will see, CA-PQ’s cache friendly design lets it outperform all
other data structures with a significant margin in many scenarios. Furthermore, CA-PQ’s
adaptivity to contention helps it perform well across a multitude of scenarios without
any need to manually tune its parameters.

We start by giving a high-level overview of CA-PQ (Section 2). We then describe its
operations in detail (Section 3) and the guarantees that they provide (Section 4). Details
of our implementation of the global CA-PQ component appear in Section 5. We then
contrast CA-PQ with related work (Section 6), experimentally evaluate CA-PQ variants
with other state-of-the-art data structures (Section 7) and conclude (Section 8).

2 A Brief Overview of the Contention Avoiding Priority Queue

As illustrated in Fig. 1, the CA-PQ has a global component and thread local components.
When a CA-PQ is uncontended it functions as a strict concurrent priority queue. This
means that the DELMIN operation removes the smallest item from the global priority
queue and the INSERT operation inserts an item into the global priority queue.

Accesses to the global priority queue detect whether there is contention during
these accesses. The counters delmin_contention and insert_contention are modified
based on detected contention so that the frequency of contention during recent calls can
be estimated. If DELMIN operations are frequently contended, contention avoidance
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for DELMIN operations is activated. If a thread’s delmin_buffer and insert_buffer are
empty and DELMIN contention avoidance is turned on, then the DELMIN operation will
grab up to k smallest items from the head of the global priority queue and place them
in the thread’s delmin_buffer. Grabbing a number of items from the head of the global
priority queue can be done efficiently if the queue is implemented with a “fat” skip list
that can store multiple items per node; see Fig. 1. Thus, activating contention avoidance
for DELMIN operations reduces the contention on the head of the global priority queue
by reducing the number of accesses by up to k − 1 per k DELMIN operations.

Contention avoidance for INSERT operations is activated for a particular thread when
contention during INSERT operations is frequent for that thread.The INSERT contention
avoidance reduces the number of inserts to the global priority queue by buffering items
from a bounded number of consecutive INSERT operations in the insert_buffer. When at
least one of the delmin_buffer and insert_buffer is non-empty, the DELMIN operation
takes the smallest item from these buffers and returns it.

3 Implementation

We will now give a detailed description of CA-PQ’s implementation. First we will
describe the implementation of the two operations, INSERT and DELMIN. We will then
describe the general requirements for the global priority queue component.

3.1 Operations

The INSERT operation. Pseudocode for this operation can be seen in Algorithm 1.
Items are inserted in the global priority queue (line 3) when contention is low or when
the number of items in the thread-local insert_buffer equals its capacity. By initially
setting the buffer’s capacity to zero and setting it to a non-zero value when INSERT
operations frequently observe contention, these two tests are folded into one; cf. line 2.

Algorithm 1: The INSERT operation
1 Function INSERT (pq, item)
2 if pq.local.insert_buffer.size == pq.local.insert_buffer.capacity then
3 contended = GINSERT(pq.global_pq, item);
4 if contended then pq.local.insert_contention += INS_CONT ;
5 else pq.local.insert_contention -= INS_UNCONT ;
6 else
7 INSERTBUFFERINSERT(pq.local.insert_buffer, item);
8 end

The INSERT operation on the global priority queue, called GINSERT, returns true
if it observed contention during the operation and false otherwise. To estimate the
contention level for INSERT operations in the priority queue, the thread local counter
insert_contention is incremented by INS_CONT if contention was detected and is
decremented by INS_UNCONT if no contention was detected (lines 4–5). In our imple-
mentation, INS_CONT is equal to two and INS_UNCONT is equal to one. As we will
soon see, these values ensure that adaptation to contention in INSERT operations will
eventually happen if more than one out of two INSERT operations are contended for a
sufficiently long period of time. Finally, if the thread local insert_buffer has a size that
is less than its capacity, the item is inserted into the insert_buffer (line 7).
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Algorithm 2: The DELMIN operation
1 Function DELMIN (pq, item)
2 switch SELECTBUFFERWITHSMALLESTKEY(pq.local.delmin_buffer, pq.local.insert_buffer) do
3 case pq.local.delmin_buffer do
4 return DELMINBUFFERDELMIN(pq.local.delmin_buffer);
5 case pq.local.insert_buffer do
6 pq.local.insert_buffer.capacity -= 1;
7 return INSERTBUFFERDELMIN(pq.local.insert_buffer);
8 otherwise do
9 contended, ret_val = GDELMIN(pq.global_pq);

10 if contended then pq.local.delmin_contention += DELMIN_CONT ;
11 else pq.local.delmin_contention -= DELMIN_UNCONT ;
12 if pq.local.delmin_contention > DELMIN_RELAX_LIMIT then
13 TURNONDELMINRELAXATION( pq.global_pq);
14 pq.local.delmin_contention = 0;
15 else if pq.local.delmin_contention < DELMIN_UNRELAX_LIMIT then
16 TURNOFFDELMINRELAXATION( pq.global_pq);
17 pq.local.delmin_contention = 0;
18 end
19 if pq.local.insert_contention > INS_RELAX_LIMIT then
20 pq.local.insert_buffer.max_size = MAX_INSERT_BUFF_SIZE;
21 pq.local.insert_contention = 0;
22 else if pq.local.insert_contention < INS_UNRELAX_LIMIT then
23 if pq.local.insert_buffer.max_size > 0 then
24 pq.local.insert_buffer.max_size -=1;
25 pq.local.insert_contention = 0;
26 end
27 pq.local.insert_buffer.capacity = pq.local.insert_buffer.max_size;
28 if ret_val is a buffer then
29 pq.local.delmin_buffer = ret_val;
30 return DELMINBUFFERDELMIN(pq.local.delmin_buffer);
31 else return ret_val ;
32 end
33 end

The DELMIN operation. Pseudocode for this operation is displayed in Algorithm 2. If
at least one of the thread local buffers is non-empty, the operation removes the smallest
item from these buffers (lines 4 and 7). If an item is removed from the insert_buffer, the
buffer’s capacity is also decreased by one (line 6). This is done to ensure that DELMIN
will fetch the minimum item from the global priority queue at least once in a given
number of DELMIN operations performed by a particular thread.

If both buffers are empty, the GDELMIN operation is called on the global priority
queue (line 9). This operation also returns an indication whether contention was detected
during the operation in addition to the removed minimum item (if contention avoidance
is turned off) or a buffer with the removed minimum items (if contention avoidance is
turned on). (If the global priority queue is empty a special empty_pq item is returned.) Af-
ter the call to GDELMIN, we record the contention by adjusting the delmin_contention
variable (lines 10–11) in a similar way as was done for the insert_contention variable
in the INSERT operation. In our implementation, the constants DELMIN_CONT and
DELMIN_UNCONT are set to 250 and 1 respectively. These values ensure that adap-
tation to contention in DELMIN operations will happen if more than one out of 250
DELMIN operations are contended during a long period of time.

We then proceed to check if delmin_contention has reached one of the thresholds
for turning on or off contention avoidance on the global priority queue (lines 12–17).
The thresholds called DELMIN_RELAX_LIMIT and DELMIN_UNRELAX_LIMIT in
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the pseudocode are in our implementation set to 1000 and −1000 respectively. Calling
TURNONDELMINRELAXATION on the global priority queue will cause subsequent
GDELMIN calls to delete up to k smallest items from the global priority queue and
return these items in a buffer. Doing the reverse call, TURNOFFDELMINRELAXATION
will cause subsequent GDELMIN calls to only remove and return the smallest item.

We then go on to check if one of the thresholds for changing the contention avoidance
for INSERT operations has been reached (lines 19–25). In our implementation, the
constants INS_RELAX_LIMIT and INS_UNRELAX_LIMIT are set to 100 and −100
respectively. Adapting to high contention for INSERT operations is done by setting the
max_size value of the insert buffer to the constant MAX_INSERT_BUFF_SIZE (500
in our implementation) on line 20. When INSERT operations experience low contention
we decrease max_size of the insert_buffer by one (line 24). We set the capacity of the
insert_buffer to the max_size value of the insert_buffer on line 27.

Note that adaptation to contention in INSERT operations is done by only doing
thread-local modification while adaptation to contention in DELMIN operations is done
by changing the state of the global component. One could also implement DELMIN
contention avoidance by only changing a thread local flag if the global priority queue
exposes separate operations for deleting a single item and a buffer of items. We expect
this alternative design choice to work equally well.

At the end of DELMIN’s code, we check if the value returned by GDELMIN is a
buffer of items or a single item (line 28). If the value is a buffer, we set it to be the thread
local delmin_buffer and return an item from that buffer. Otherwise, if it is a single item,
we simply return that item (line 31).

3.2 Global Concurrent Priority Queue Component

The requirements for the global priority queue are as follows. First, it should support lin-
earizable INSERT and DELMIN operations. Second, it should also support a linearizable
bulk DELMIN operation that returns up to the k smallest items from the priority queue
in a buffer. Furthermore, all these operations need to be able to detect contention so as
the contention avoidance mechanisms are activated. With these properties fulfilled, it is
easy to see that the interface used for the global priority queue in Algorithm 1 and 2 can
be implemented. The ability to turn off and on DELMIN relaxation can be implemented
by associating a flag with the global priority queue. The GDELMIN operation simply
needs to check this flag and use the bulk DELMIN functionality to return a buffer of
items if the flag is on, or use the single-item DELMIN functionality to return a single
item otherwise.

For the DELMIN contention avoidance to work as intended, it is crucial that the bulk
DELMIN operations can remove and return the k smallest items much faster than doing
k single-item DELMIN operations. To make this possible, our implementation of the
global concurrent priority queue makes use of a skip list data structure with fat nodes;
see Fig. 1. As every skip list node in our implementation can store up to k items, the
bulk DELMIN operation can remove and return up to k smallest items with as little work
as the single-item DELMIN operation needs to do in the worst case. A k value that is
equal to or greater than the number of threads should be enough to eliminate most of the
contention in DELMIN. Our implementation uses 80 as the value of k.
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4 Properties

We will now state the guarantees provided by the CA-PQ. As some applications might
not need the contention avoidance for both INSERT and DELMIN, we will first state and
prove the guarantees of the CA-PQ variants derived by turning these features off.

First note that turning off the contention avoidance for both INSERT and DELMIN
results in a strict priority queue. We call the data structure that results from turning off
contention avoidance for INSERT operations CA-DM. To state the guarantee provided
by CA-DM we first have to define a particular time period.

Definition 1. (Time period TP(k,Dn)) Let an integer k ≥ 1, D1, . . . , Dn be the
sequence of DELMIN calls performed by a thread T on a priority queue Q, and let
j = max(1, n− k + 1). Then TP (k,Dn) is the time period that starts at the time Dj

is issued and ends when the call Dn returns.

We can now state and prove the guarantee that the CA-DM priority queue provides.

Theorem 1. (CA-DM DELMIN Guarantee) The item returned by a DELMIN call D
on a CA-DM priority queue Q is guaranteed to be among the k · P smallest items that
have been inserted into the priority queue at some point in time t during the time period
TP (k,D), where P is the number of threads that are accessing Q and k is the maximum
size of the buffer returned by the global priority queue that is used by Q.

Proof: Let t be the linearization point of the latest GDELMIN call G (Algorithm 2,
line 9) performed by the issuer of D before D’s return. Note that t must then be in the
time period TP (k,D) as the number of items in the delmin_buffer decreases by one in
every DELMIN call that does not get its item directly from the global priority queue. All
items in the buffer returned by the call G are among the k · P smallest items in Q at the
time of G’s linearization point. To see this, note that no items in the global priority queue
were smaller than the at most k items returned by G at G’s linearization point and no
more than (P − 1) · k items can be buffered in the delmin_buffers of other threads. �

We call the priority queue derived from CA-PQ by turning off contention avoidance
for DELMIN CA-IN. The guarantee provided by CA-IN is arguably even weaker than
that provided by CA-DM.

Theorem 2. (CA-IN DELMIN Guarantee) At least one in everym+1 DELMIN opera-
tions performed by a thread is guaranteed to be among them · (P −1)+1 smallest items
in the CA-IN priority queue Q at some point in time during the operation’s execution,
where m is equal to MAX_INSERT_BUFF_SIZE and P is the number of threads that
are accessing Q.

Proof: At least one call D in every m + 1 DELMIN calls returns an item I from a
GDELMIN call G since the capacity of the insert_buffer is decreased when items are
removed from it (Algorithm 2, line 6). This item I must be among the m · (P − 1) + 1
smallest items in the priority queue at the linearization point of G since there can be at
most m · (P − 1) smaller items in the insert_buffers of other threads. �

The guarantee provided by a CA-PQ that has both contention avoidance for DELMIN
and INSERT operations turned on is very similar to that of CA-IN.
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Theorem 3. (CA-PQ DELMIN Guarantee) At least one in every m + 1 DELMIN
operations performed by a thread is guaranteed to be among them · (P −1)+1 smallest
items in the CA-PQ priority queue Q at some point in time during the operation’s
execution, where m is equal to k+MAX_INSERT_BUFF_SIZE, k is the maximum size of
the buffer returned by GDELMIN, and P is the number of threads that are accessing Q.

Proof: The proof is very similar to the proof of Theorem 2. The difference is that there is
now also the delmin_buffer so that m becomes slightly larger. �

All priority queue variants mentioned above also support the property specified in
the theorem below which is important for the termination of many parallel algorithms
that employ concurrent priority queues.

Theorem 4. (DELMIN Deletes All) Let S be the set of all threads that have issued
operations on a priority queue Q and t be a specific point in time after which no INSERT
operations are issued. If all threads in S issue a DELMIN operation after time t and all
get the special item empty_pq as results, then all items that have been inserted into Q
have been deleted and returned by DELMIN operations.

Proof: An item that is inserted into Q and has not yet been deleted is stored in the global
priority queue or in one of the thread-local buffers of threads in S. It is easy to see that
all these locations must be empty if all threads in S issue DELMIN operations after t
and get the empty_pq symbol as return value. �

5 Our Implementation of the Global Priority Queue Component

Our global concurrent priority queue is constructed from a contention adapting search
tree (CATree) [14] using a skip list with fat nodes as backing data structure. We refer to
the original CATree paper for a complete description of the CATree data structure and
will here just briefly describe how we extended it to support the DELMIN operations.
Figure 2 shows the structure of a CATree. The routing nodes are used to find the location

Fig. 2: The CATree data structure.

of a specific item in the data structure. The actual
items stored in the data structure are located in
the sequential data structure instances in the last
layer. These sequential data structures are protected
by locks in the base nodes where they are rooted.
Base nodes can be split and joined with each other
based on how much contention is detected in the
base node locks. As the smallest items in a CATree
are always located in the leftmost part of the tree
when depicted as in Fig. 2, the DELMIN operation
first finds and locks the leftmost base node in the
CATree. When the leftmost base node is empty it
is joined together with its neighbor using the CATree algorithm for low contention
adaptation until the leftmost base node is non-empty1. As depicted in Fig. 1, we reuse
the fat skip list nodes as delmin_buffer and use a binary heap as insert_buffer.

1 The only difference between the low-contention join function described in the CATree pa-
per [14] and the one used to create a non-empty leftmost base node is that the latter uses
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Traditional locks are well known to give poor performance when they are con-
tended [3, 6, 9]. Therefore, to improve the performance when base node locks in the
CATree are contended we use a locking technique that we call delegation locking but
that is also called combining in other places [3, 6]. More specifically we use a delegation
locking technique, called queue delegation locking [9], when locking base nodes. Dele-
gation locking lets the current lock owner thread help other threads perform their critical
sections that are waiting to acquire the lock. By doing so the throughput of critical
sections executed on a particular lock can be substantially increased because the current
lock owner can keep the data protected by the lock in its private processor cache while
helping critical sections from other threads. Queue delegation locking has the additional
benefit compared to other locking algorithms that critical sections for which the issuing
threads do not need any return value (such as the INSERT operation) can be delegated to
the lock owner without any need to wait for the actual execution of the critical section.
Linearizability is still provided as the order of the delegated operation is maintained by a
queue. Contention in the operations is detected by checking whether another thread is
holding the base node lock that the operation needs to acquire.

Memory management. The only nodes of the data structure that need delayed
memory reclamation in our CA-PQ implementation are the routing nodes and base nodes
in the CATree component. These nodes can be read by multiple threads concurrently so
it is unsafe to reclaim these nodes before it is certain that no threads can hold references
to them. To reclaim these nodes we use Keir Fraser’s epoch based reclamation [4].

6 Related Work

Early attempts to construct concurrent priority queues, e.g [7], were based on heap data
structures. More recent concurrent priority queues have often been based on concurrent
skip lists as empirical evidence suggests that this design is more scalable than the heap
based design [16]. Both the priority queue by Shavit and Lotan [16] and the one by
Sundell and Tsigas [17] handle DELMIN by first doing a logical deletion of the node
to be deleted by marking it before it is physically removed from the skip list. The skip
list based priority queue by Lindén and Jonsson [12] (called Lindén from here on) also
uses logical deletion before physical removal but achieves better performance and less
memory contention by physically removing a prefix of logically deleted nodes in one
go, in contrast to previous algorithms that physically remove one node at a time. Calciu
et al. have explored the idea of using combining and delegation to speedup the DELMIN
operation. Their data structure [2] uses a sequential skip list managed by a server thread
for small keys and a concurrent skip list for larger keys to exploit the parallelism of
INSERT operations. In a very recent work, Zhang and Dechev have proposed a concurrent
priority based on multi-dimensional linked lists [21]. We consider all the above works
on concurrent priority queues orthogonal to the main contribution of this paper which is
a priority queue with more relaxed semantics.

Concurrent priority queues with relaxed semantics have also been proposed. The
MultiQueue data structure by Rihani et al. [13] is created from C ·P sequential priority

a forcing LOCK call instead of a TRYLOCK call to lock the neighbor. (This cannot cause a
deadlock since no other code issues forcing lock calls in the other direction.)
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queues protected by locks, where C is a constant and P is the number of threads using
the priority queue. An INSERT operation in a MultiQueue selects one of the sequential
queues at random and inserts in that queue. MultiQueue’s DELMIN operation checks
the minimum item in two of the sequential priority queues selected at random (without
acquiring locks) and does the actual DELMIN in the one of these priority queues with the
smallest key if that priority queue is successfully locked with a try-lock call. The process
is retried if the try-lock call fails. The MultiQueue does not provide any guarantee, but
an experimental evaluation suggests that DELMIN often returns an item with one of the
smallest keys in the priority queue [13].

Alistarh et al. have created the SprayList which is a relaxed priority queue based
on the skip list data structure [1]. SprayList relaxes the result of the DELMIN operation
by “spraying” into a random position close to the head of the skip list. The SprayList
guarantees that the item returned by DELMIN is among the O(P log3 P ) smallest items
with high probability, where P is the number of threads.

For scheduling purposes in a task-based parallel programming framework, Wimmer
et al. have created relaxed priority queues that have different trade-offs between quality
of the items returned by DELMIN and scalability [20]. Of these, the queue that seems to
perform best is called Hybrid k. A later publication, also by Wimmer et al., introduced
the k-LSM priority queue [19]. k-LSM provides the structural guarantee that no more
than k · P items might be skipped by DELMIN, where k is a configurable parameter and
P is the number of threads. We will here focus on the k-LSM priority queue rather than
Hybrid k because the implementation of the latter is optimized for a particular task-based
parallel programming framework, making it difficult to compare with, and experiments
by Wimmer et al. suggest that k-LSM performs slightly better than Hybrid k [19].
The k-LSM data structure is based on so called log-structured merge-trees (LSM) and
consists of a thread local LSM component and a shared relaxed LSM component. INSERT
inserts the item to the thread local LSM component. If this results in a block larger than
a certain size, that block is merged into the shared LSM. DELMIN compares one of the
k smallest items in the shared LSM with the smallest item from the local LSM and tries
to remove the smallest of those items.

All the above relaxed priority queues (MultiQueue, SprayList, Hybrid k and k-LSM)
utilize relaxations to avoid contention in DELMIN operations. However, in contrast to
CA-PQ, they all access non-thread-local memory in every DELMIN operation. As this
shared memory is written to by many threads frequently, many of these accesses induce
cache misses. This can be expensive as it causes the core executing the thread to wait for
data to be transferred from remote locations and causes contention in the memory system.
On big multi-cores, especially on NUMA machines with several processor chips, getting
data from remote locations can be several orders of magnitude more expensive than
getting data from the same processor’s cache. There are two reasons why CA-PQ can
avoid the frequent remote memory accesses in DELMIN. Firstly, its DELMIN fetches a
block containing several items from the global priority queue, i.e., it gets several items
for a single cache miss (because several items can be stored on the same cache line).
Secondly, the guarantees provided by CA-PQ are more permissive than those provided
by SprayList, Hybrid k and k-LSM, which makes it possible to allow CA-PQ’s DELMIN
to often be performed without checking if other threads have changed the data structure.
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Another major difference between CA-PQ and other relaxed priority queues is that
CA-PQ only activates relaxations when this is motivated by detected high contention.
As we will see in the next section, this makes it possible for CA-PQ to achieve high
performance in a wide range of scenarios.

7 Experimental Evaluation

We evaluate the scalability and performance of CA-PQ and the variants CA-IN (INSERT
contention avoidance turned off), CA-DM (DELMIN contention avoidance turned off)
and CATree (the global priority queue component of our algorithm) in a parallel single-
source shortest-path (SSSP) benchmark. The benchmark uses a parallel version of
Dijkstra’s algorithm using a concurrent priority queue; see Tamir et al. [18]. We note
that we avoid the node locks used in this parallelization by updating the node weights
in compare-and-swap loops. CA-PQ does not have a DECREASEKEY operation that
changes the key of an item in the priority queue — such is also the case for the other
concurrent priority queues that we compare against. Changing the weight of a key
in the priority queue is therefore implemented by an INSERT operation and the other
reference to the node that might exist in the queue is lazily removed when it is deleted
by a DELMIN operation. As noted by Tamir et al. [18], this lazy removal scheme can
induce some overhead over having a concurrent priority queue with a DECREASEKEY
operation. To get a hint of how big this overhead might be, we include the sequential
version of Dijkstra’s algorithm that uses DECREASEKEY with a Fibonacci Heap [5] as
priority queue as a base line. The overhead of not having DECREASEKEY operation
seems to be quite low in many cases as the sequential Dijkstra has similar performance
as the parallel SSSP algorithm using CA-PQ when using just one thread.

Data sets. We include results from running the SSSP benchmark on the California
road network (called RoadNet from now on) and a social media network obtained
from LiveJournal (called LiveJournal from now on) [11]. RoadNet is a relatively sparse
network containing 1.95 million nodes connected to the source involving 5.5 million
edges. LiveJournal is a more dense network containing 4.4 million nodes connected
to the source and 68 million edges. As we do not have any natural weights for these
networks we used two versions of these networks. A weight of one on all edges is used
in the unweighted version. In the weighted version, a random weight from the range
[0, 1000] is assigned to each of the edges.

Data structures and parameters. We compare our priority queues to Lindén [12],
MultiQueue [13], SprayList [1] and k-LSM [19]. Section 6 contains a description of
these data structures. All implementations are those provided by their inventors except
the MultiQueue which is implemented by the authors of k-LSM. We use the default
parameters for SprayList as configured by its authors because the SprayList was evaluated
in a very similar benchmark to ours [1]. To find a good value for the C parameter used by
the MultiQueue, we ran the benchmarks with C equal to 2, 4, 8, 16, 32 and 64. We found
that the values 8 and 16 gave the best performance and the difference between these
two parameters was very small in all cases. We therefore use MultiQueue with C = 16.
Similarly, to find a good value for the k parameter used by k-LSM we ran the experiments
with k equal to 2n for all integer values of n from 8 to 17. From this, we found that
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k = 210 = 1024 gave the best performance on RoadNet and that k = 216 = 65 536
generally gave the best performance on LiveJournal. We therefore show k-LSM with
both k = 1024 (klsm1024) and k = 65 536 (klsm65536).

Methodology. We show results from a machine with four Intel(R) Xeon(R) E5-4650
CPUs (2.70GHz, turbo boost turned off), eight cores each (i.e. the machine has a total of
32 physical cores, each with hyperthreading, which makes a total of 64 logical cores).
The machine has 128GB of RAM and is running Linux 3.16.0-4-amd64. We compiled
the benchmark which is written in C and C++ with GCC version 5.3.0 and used the
optimization flag -O3. We have verified our results by running the experiments on a
machine with four AMD Opteron 6276 (2.3 GHz, in total 64 cores)2. Threads are pinned
to logical cores so that the first 16 threads in the graphs run on the first processor chip,
the next 16 on the second, and so on. We ran each measurement three times and show
the average and error bars for the minimum and maximum in the graphs. As a sanity
check we compared the calculated distances against the actual distances after each run.

Results. The results from the SSSP benchmark are displayed in Fig. 3. The graphs
show throughput N ÷ T on the y-axis, where N is the number of nodes in the graph and
T is the execution time of the benchmark in µs. We show throughput rather than time
because this makes the scalability behavior easier to see. (The poor performance of some
data structures would otherwise make the results unreadable.) The dashed black line
shows the performance of the sequential Dijkstra’s algorithm with a Fibonacci heap. The
red line with legend Lock shows the performance of a binary heap protected by a lock.

RoadNet. Let us first look at the results for the RoadNet graphs shown in Fig. 3a
and 3b. With RoadNet, none of the data structures manages to provide much increase in
performance when more than one processor chip is utilized (after 16 threads). However, in
the scenario with edge weight range [0, 1000], CA-PQ archives a speedup of 11 compared
to its single thread performance when running on 16 threads (remember that these 16
threads run on 8 cores with hyperthreading). It is clear from the worse performance of
CA-DM (INSERT contention avoidance turned off) and CA-IN (DELMIN contention
avoidance turned off) that both contention avoidance mechanisms are beneficial to
achieving this performance in the relatively sparse RoadNet graph that gives high
contention both in INSERT and DELMIN operations. The data structure that achieves the
second best performance after CA-PQ in these scenarios is klsm1024. It is interesting to
note that klsm1024 also buffers inserted items in a thread local storage.

To investigate the reason for the performance further, we show number of L2 cache
misses (measured with hardware counters) divided by the number of nodes in the graph
in Table 1. As the L2 cache is private to a core on this processor, more L2 cache misses
is an indication of worse memory locality and more accesses to memory modified by
several thread. Unsurprisingly, CA-PQ has the least amount of L2 cache misses in the
RoadNet scenarios due to its cache friendly design.

In the sequential version of Dijkstra’s algorithm each node is processed exactly
once. In the parallel version, this is not always the case as the node with the smallest
distance estimate is not always processed first. We can therefore use the number of
nodes processed by the parallel algorithm as a measurement of how precise the DELMIN

2 Results from the AMD machine and from additional scenarios as well as the benchmark code
are available at http://www.it.uu.se/research/group/languages/software/ca_pq.

http://www.it.uu.se/research/group/languages/software/ca_pq
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Fig. 3: Graphs showing results from the SSSP experiment. Throughput (# nodes in graph
÷ execution time (µs)) on the y-axis and number of threads on the x-axis. The black
dashed line is the performance of sequential Dijkstra’s algorithm with a Fibonacci Heap.

operation is (how far from the actual minimum the returned items are). In the column
“waste” of Table 1 we show the number of nodes processed minus the number of nodes in
the graph. We see that the strict priority queues CATree, Lindén and Lock all do a small
amount of wasted work in both the unweighted and the weighted scenarios. CA-PQ,
CA-IN and the k-LSMs all waste quite a lot of work considering that RoadNet only
has 1.95 million nodes. However, as the contention on the priority queue is high in this
scenario it can be less wasteful for the priority queue to be less precise in order to reduce
the contention inside the priority queue. As CA-PQ only activates the relaxed semantics
when high contention is detected, one can see it as opportunistic in the sense that it
lowers precision and risks more wasted work in the application only when time and
resources would be wasted anyway due to contention.

The MultiQueue achieves very good precision according to the waste estimate but as
each operation accesses at least one of the shared priority queues, it suffers from bad
memory locality; see Table 1. Since communication between processor chips is more
expensive than communication within the chip, the bad memory locality of MultiQueue
becomes apparent first when more than one NUMA node is utilized; see Fig. 3a.

LiveJournal. We now go on to discuss the results from the graph LiveJournal that
can be seen in Fig. 3c and 3d. As the LiveJournal graph is relatively dense there will
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Table 1: Waste and cache misses (64 threads). The column time shows execution time
in seconds, waste shows the number of nodes unnecessarily processed and the column
$miss shows number of L2 cache misses divided by number of nodes in the graph.
Graph RoadNet LiveJournal
Weights 1 [0,1000] 1 [0,1000]

time waste $miss time waste $miss time waste $miss time waste $miss
CA-PQ 0.07 1730k 7.8 0.09 1927k 12.2 0.63 924k 30.1 0.47 353k 95.4
CA-RM 0.43 7k 14.8 0.38 11k 34.6 0.98 8 32.2 0.47 2k 94.1
CA-IN 0.14 2264k 8.2 0.48 2030k 27.3 1.25 1768k 37.0 2.34 714k 110.5
MultiQ. 0.18 8k 32.2 0.19 58k 36.1 0.56 39 63.4 0.93 2k 112.2
kl.1024 0.20 2498k 12.4 0.19 2222k 15.8 161.39 174 33980.3 7.63 3k 2538.5
kl.65536 0.44 28411k 82.5 0.42 26115k 105.6 4.76 688k 601.7 5.48 1857k 1192.7
Spray 2.51 134k 461.0 0.27 230k 88.3 8.33 41 314.9 2.39 7k 755.5
CATree 0.68 9 20.9 0.71 36 40.2 1.59 1 40.8 2.27 5 107.5
Lindén 3.39 206 108.4 1.01 252 114.6 7.96 21 142.6 4.64 0 353.1
Lock 7.06 210 39.7 11.02 490 59.0 17.01 54 62.4 49.73 86 163.4

be many priority queue items with the same distance (key) while running the parallel
SSSP. This is especially true in the unweighted case (Fig. 3c). This can lead to a lot of
contention in INSERT operations as the skip list based data structures (CA-*, SprayList,
Lindén and CATree) all try to insert an item with the same distance in the same location.
The MultiQueue however is excellent in avoiding contention and achieves the best
performance in the unweighted LiveJournal (Fig. 3c). However, MultiQueue is tightly
followed by CA-PQ as CA-PQ is also good at avoiding contention with its contention
avoidance mechanisms and has good memory locality; see Table 1.

In the weighted LiveJournal scenario (Fig. 3d), where the contention in INSERT
operations is not as high as in the unweighted case, CA-PQ and CA-DM are by far
outperforming the other data structures. Some hints about the reason for this is given
in Table 1: one can see that CA-PQ and CA-DM induces less L2 cache misses than the
other data structures. However, we want to stress that the number of L2 cache misses
is a course-grained measurement of memory locality. The cost of cache misses can
differ depending on whether it is a read miss or write miss and whether the miss causes
communication outside the chip or not.

From Table 1, we see that CA-DM generally does relatively little wasted work while
CA-PQ is more wasteful which is natural as CA-PQ provides weaker guarantees than
those provided by CA-DM. This also explains why CA-DM performs better than CA-PQ
by a very small amount for most thread counts in the weighted LiveJournal scenario.

A note on denser graphs. We have also run experiments on randomly generated
graphs that are more dense than the graphs used in the experiments we just presented.
(Refer to http://www.it.uu.se/research/group/languages/software/ca_pq
for the results of these experiments.) Dense graphs tend to give an access pattern on
the concurrent priority queue with many more INSERT operations than DELMIN in the
beginning of the run and then many more DELMIN than INSERT in the end of the run.
CA-PQ is efficient in these kinds of scenarios because of its cache friendly DELMIN
operation. For example, CA-PQ’s execution time on a graph with 100 edges per node and

http://www.it.uu.se/research/group/languages/software/ca_pq
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edge weights from the range [0, 1000] is only about one third of the execution time of
the second best data structure in this scenario (SprayList). The access pattern produced
by denser graphs also explains why k-LSM performs badly with the LiveJournal graphs.
When DELMIN operations are frequent and INSERT’s are less frequent, most DELMIN
calls will take items from the shared LSM, which induces contention and cache misses.

Usefulness of adaptivity. To investigate the usefulness of adaptively turning on the
contention avoidance techniques we have run experiments where contention avoidance
for both INSERT and DELMIN are always turned on (not shown in graphs to not clutter
them). We found the performance of this non-adaptive approach to be similar to CA-PQ
in scenarios where INSERT contention is high, but significantly worse in scenarios with
low INSERT contention (e.g. LiveJournal weight range [0, 1000]). Thus, CA-PQ’s ability
to adaptively turn off and on the contention avoidance techniques is beneficial because it
helps it perform well in a multitude of scenarios without any need to change parameters.

The global component. Finally, we comment on the performance of the strict
priority queue that we developed as the global component of CA-PQ which is called
CATree in Fig. 3 and Table 1. CATree beats the state-of-the-art lock-free linearizable
priority queue by Lindén by a substantial amount in several of the scenarios and especially
when more than one NUMA node is used. We attribute this good performance to the
good memory locality provided by delegation locking and the fact that we use fat skip
list nodes which increase locality and reduce the number of memory allocations.

A note on thread preemption. In our benchmark setup, thread preemption is un-
common since we use one hardware thread per worker thread. In setups where threads
often get preempted or stalled for some reason, CA-PQ’s buffering of items can be
problematic, as small items can be stuck for a long period of time in the buffers of these
threads. It remains as future work to investigate solutions for this problem, perhaps using
a stealing technique similar to the one proposed by Wimmer et al. [19].

8 Concluding Remarks

We have introduced the CA-PQ concurrent priority queue that activates relaxed semantics
only when resources would otherwise be wasted on contention related overheads and on
waiting. CA-PQ has a cache friendly design and avoids accesses to memory that is written
to by many threads when its contention avoidance mechanisms are activated, which
contributes to its performance advantage compared to related relaxed data structures.

It would be interesting to investigate other strategies for adapting the relaxation. For
example, one can experiment with a more fine grained adjustment of the relaxation than
what is done in CA-PQ or consider relaxation based on feedback about wasted work
from the application. However, the investigation of such strategies is left for future work.
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A Additional Results

This appendix contains results from an additional machine and two more graphs. The
benchmark set up is the same as described in Section 7. The machines that we used are
the following:

Sandy This is the same machine that we show results for in Section 7. It has four
Intel(R) Xeon(R) E5-4650 CPUs (2.70GHz, turbo boost turned off), eight cores
each (i.e. the machine has a total of 32 physical cores, each with hyperthreading,
which makes a total of 64 logical cores) and 128GB of RAM. Sandy is running
Linux 3.16.0-4-amd64 and we compiled the benchmark which is written in C and
C++ using GCC version 5.3.0 and the optimization flag -O3.

Bulldozer This machine has four AMD Opteron 6276 CPUs (2.3GHz, in total 64 cores),
128GB of RAM and is running the same version of Linux as Sandy (3.16.0-4-amd64).
On this machine the benchmark was compiled with GCC 4.9.2 and the optimization
flag -O3.

In addition to graph instances with a weight of one on all edges (called unweighted)
and the one with weights randomly taken from the interval [0, 1000], we here also
present results for graph instances with edge weights randomly taken from the range
[0, 1000000]. The results for the two graphs described in Section 7 can be seen in Fig. 4
and 5. The results for Sandy are displayed on the left and the results for Bulldozer are
displayed on the right for easy comparison.

In addition to the realistic graphs RoadNet and LiveJournal, we here also present
results for more dense randomly generated Erdős-Rényi graphs. The first of them has
1 000 000 nodes and edge probability 0.0001 and the second one has 10 000 nodes and
edge probability 0.5. Properties for all graphs are presented in Table 2. The results for
the two randomly generated graphs are shown in Fig. 6 and 7.

L2 cache miss information and information about wasted work on the different
graphs when running on the Sandy machine appears in Tables 3, 4, 5 and 6.

One can see that the performance of the sequential implementation becomes better
compared to the parallel implementations the denser the graphs become. This is what
one can expect as denser graphs lead to more node relaxations, so the benefits of having
a priority queue with a DECREASEKEY operation become more apparent in denser
graphs.

Table 2: # Nodes denotes the number of nodes that are reachable from the source and
# Edges is the number of edges in the graph component involving these nodes.

Graph # Nodes # Edges # Edges ÷ # Nodes
RoadNet 1950461 5502114 ∼2.8
LiveJournal 4400347 68175771 ∼15.5
N = 106 P = 10−4 1000000 100001086 ∼100.0
N = 104 P = 0.5 10000 49988838 ∼4998.9
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Fig. 4: Results from the RoadNet graph. Throughput (# nodes in graph ÷ execution
time (µs)) on the y-axis and number of threads on the x-axis. The black dashed line is
the performance of the sequential Dijkstra’s algorithm with a Fibonacci Heap.
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Fig. 5: Results from the LiveJournal graph. Throughput (# nodes in graph ÷ execution
time (µs)) on the y-axis and number of threads on the x-axis. The black dashed line is
the performance of the sequential Dijkstra’s algorithm with a Fibonacci Heap.
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Fig. 6: Results from a randomly generated Erdős-Rényi graph with N=106 P=10−4.
Throughput (# nodes in graph÷ execution time (µs)) on the y-axis and number of threads
on the x-axis. The black dashed line is the performance of the sequential Dijkstra’s
algorithm with a Fibonacci Heap.
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Fig. 7: Results from a randomly generated Erdős-Rényi graph with N=104 P=0.5.
Throughput (# nodes in graph ÷ execution time (µs)) on the y-axis and number of
threads on the x-axis. The black dashed line is the performance of the sequential Dijk-
stra’s algorithm with a Fibonacci Heap.
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Table 3: Sandy RoadNet Scenarios (64 threads). The column time shows execution
time in seconds, waste is the number of nodes unnecessarily processed, and the column
$miss shows number of L2 cache misses divided by number of nodes in the graph.
Weights 1 [0,1000] [0,1000000]

time(s) waste $misses time(s) waste $misses time(s) waste $misses
CA-PQ 0.067 1729653 7.8 0.088 1926800 12.2 0.089 1900753 12.2
CA-DM 0.430 7099 14.8 0.382 11061 34.6 0.387 9770 35.1
CA-IN 0.139 2264220 8.2 0.483 2029996 27.3 0.482 2149061 26.6
MultiQueue 0.175 8021 32.2 0.191 57562 36.1 0.192 58402 36.1
klsm1024 0.198 2498244 12.4 0.191 2222479 15.8 0.210 2213296 14.7
klsm65536 0.438 28410677 82.5 0.425 26115089 105.6 0.524 33558557 97.5
SprayList 2.509 134462 461.0 0.272 229937 88.3 0.388 218571 89.8
CATree 0.678 9 20.9 0.705 36 40.2 0.730 36 40.3
Lindén 3.387 206 108.4 1.012 252 114.6 1.009 472 114.7
Lock 7.064 210 39.7 11.023 490 59.0 10.714 398 60.6

Table 4: Sandy LiveJournal Scenarios (64 threads). The column time shows execution
time in seconds, waste is the number of nodes unnecessarily processed, and the column
$miss shows number of L2 cache misses divided by number of nodes in the graph.

Weights 1 [0,1000] [0,1000000]
time waste $misses time waste $misses time waste $misses

CA-PQ 0.631 923669 30.1 0.471 352507 95.4 0.712 466590 140.9
CA-DM 0.983 8 32.2 0.467 1870 94.1 0.710 2302 140.0
CA-IN 1.254 1768109 37.0 2.337 713527 110.5 2.976 895654 159.7
MultiQueue 0.559 39 63.4 0.927 2116 112.2 0.926 2207 112.2
klsm1024 161.391 174 33980.3 7.626 2518 2538.5 9.168 6245 1989.5
klsm65536 4.763 687844 601.7 5.481 1857467 1192.7 5.839 1664835 1729.4
SprayList 8.332 41 314.9 2.386 6637 755.5 2.759 6370 815.3
CATree 1.595 1 40.8 2.274 5 107.5 3.354 6 160.8
Lindén 7.957 21 142.6 4.644 0 353.1 4.688 0 382.7
Lock 17.014 54 62.4 49.727 86 163.4 53.965 88 179.9
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Table 5: Sandy Random N=1000000 P=0.0001 (64 threads). The column time shows
execution time in seconds, waste is the number of nodes unnecessarily processed, and
the column $miss shows number of L2 cache misses divided by number of nodes in the
graph.

Weights 1 [0,1000] [0,1000000]
time waste $misses time waste $misses time waste $misses

CA-PQ 0.499 73549 161.9 0.447 70221 272.6 0.649 47067 369.0
CA-DM 0.477 0 145.8 0.426 301 264.4 0.624 149 362.1
CA-IN 0.765 69618 170.4 1.287 110164 295.4 1.696 133327 426.2
MultiQueue 0.385 0 184.4 2.106 928 691.2 2.091 752 727.6
klsm1024 6.055 34 6669.7 2.974 342 3074.3 2.556 498 1699.0
klsm65536 2.350 329032 1135.7 3.639 712214 2893.9 3.909 758414 3358.4
SprayList 2.176 8 499.0 1.298 2094 1791.5 1.319 1798 1577.1
CATree 0.588 0 152.2 1.246 3 287.7 1.863 6 404.5
Lindén 2.175 0 281.3 2.257 0 751.6 2.284 1 826.4
Lock 3.466 9 178.6 22.618 65 446.6 24.900 63 480.3

Table 6: Sandy Random N=10000 P=0.5 (64 threads). The column time shows execu-
tion time in seconds, waste is the number of nodes unnecessarily processed, and the
column $miss shows number of L2 cache misses divided by number of nodes in the
graph.

Weights 1 [0,1000] [0,1000000]
time waste $misses time waste $misses time waste $misses

CA-PQ 0.045 2 1666.3 0.065 1672 2333.7 0.072 2067 2467.3
CA-DM 0.045 2 1667.4 0.063 595 2179.0 0.073 2042 2623.4
CA-IN 0.048 7 1721.9 0.089 3246 2569.8 0.088 120 2199.6
MultiQueue 0.107 269 3482.3 0.182 795 5724.7 0.260 2197 7591.9
klsm1024 0.149 135 2564.2 0.229 377 3115.9 0.261 11126 5962.3
klsm65536 0.159 326 2506.0 0.178 4281 3062.3 0.248 19403 6089.7
SprayList 0.042 22 2545.9 0.073 1690 4413.9 0.107 7698 6641.6
CATree 0.048 1 1695.4 0.081 70 2035.0 0.090 81 2232.9
Lindén 0.058 0 1832.2 0.092 13 2575.2 0.095 9 2718.0
Lock 0.170 4635 2786.3 0.667 115 2646.8 0.827 140 2915.7
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