
Efficient Support for Range Queries and Range Updates
Using Contention Adapting Search Trees?

Konstantinos Sagonas and Kjell Winblad

Department of Information Technology, Uppsala University, Sweden

Abstract. We extend contention adapting trees (CA trees), a family of concur-
rent data structures for ordered sets, to support linearizable range queries, range
updates, and operations that atomically operate on multiple keys such as bulk
insertions and deletions. CA trees differ from related concurrent data structures
by adapting themselves according to the contention level and the access patterns
to scale well in a multitude of scenarios. Variants of CA trees with different per-
formance characteristics can be derived by changing their sequential component.
We experimentally compare CA trees to state-of-the-art concurrent data structures
and show that CA trees beat the best data structures we compare against with
up to 57% in scenarios that contain basic set operations and range queries, and
outperform them by more than 1200% in scenarios that also contain range updates.

1 Introduction

Data intensive applications on multicores need efficient and scalable concurrent data
structures. Many concurrent data structures for ordered sets have recently been proposed
(e.g [2, 4, 8, 11]) that scale well on workloads containing single key operations, e.g.
insert, remove and get. However, most of these data structures lack efficient and scalable
support for operations that atomically access multiple elements, such as range queries,
range updates, bulk insert and remove, which are important for various applications
such as in-memory databases. Operations that operate on a single element and those that
operate on multiple ones have inherently conflicting requirements. The former achieve
better scalability by using fine-grained synchronization, while the latter are better off
performance-wise if they employ coarse-grained synchronization. The few data structures
with scalable support for some multi-element operations [1, 3] have to be parameterized
with the granularity of synchronization. Setting this parameter is inherently difficult
since the usage patterns and contention level are sometimes impossible to predict. This
is especially true when the data structure is provided as a general purpose library.

Contention adapting trees (CA trees) [18] is a new family of concurrent data struc-
tures for ordered sets, that adapt their synchronization granularity according to the
contention level and the access patterns even when these change dynamically. In this
work, we extend CA trees with support for operations that atomically access multiple
elements. As we will see, CA trees provide good scalability both in contended and
? Research supported in part by the European Union grant IST-2011-287510 “RELEASE: A

High-Level Paradigm for Reliable Large-scale Server Software” and the Linnaeus centre of
excellence UPMARC (Uppsala Programming for Multicore Architectures Research Center).



uncontended situations. Moreover they are flexible: CA tree variants with different
performance characteristics can be derived by selecting their underlying sequential data
structure component. CA trees support the common interfaces of sets, maps and key-
value stores as well as range queries, range updates, bulk inserts, bulk removes and other
operations that atomically access multiple keys. Experiments on scenarios with a variety
of mixes of these operations show that CA trees provide performance that is significantly
better than that obtained by state-of-the-art data structures for ordered sets and range
queries. All these make CA trees suitable for a multitude of applications, including
in-memory databases, key-value stores and general purpose data structure libraries.

Definitions. A range query operation atomically takes a snapshot of all elements belong-
ing to a range [a, b] of keys. A range update atomically applies an update function to all
values associated with keys in a specific key range. A bulk insert atomically inserts all
elements in a list of keys or key-value pairs. (A bulk remove is defined similarly.) We call
operations that operate on a range of elements range operations and use multi-element
operations as a general term for operations that atomically access multiple elements.

Overview. We start by reviewing related work (Section 2) before we introduce the CA
trees in detail (Section 3) and compare them experimentally to related data structures
(Section 4). The paper ends with some discussion and concluding remarks (Section 5).

2 Related Work

In principle, concurrent ordered sets with linearizable range operations can be imple-
mented by utilizing software transactional memory (TM): the programmer simply wraps
the operations in transactions and lets the TM take care of the concurrency control to en-
sure that the transactions execute atomically. Even though some scalable data structures
have been derived by carefully limiting the size of transactions (e.g. [1, 7]), currently
transactional memory does not offer a general solution with good scalability; cf. [1].

Brown and Helga have extended the non-blocking k-ary search tree [4] to provide
lock-free range queries [3]. A k-ary search tree is a search tree where all nodes, both
internal and leaves, contain up to k keys. The internal nodes are utilized for searching,
and leaf nodes contain all the elements. Range queries are performed in k-ary search
trees with immutable leaf nodes by using a scan and a validate step. The scan step scans
all leaves containing keys in the range and the validate step checks a dirty bit that is
set before a leaf node is replaced by a modifying operation. Range queries are retried
if the validation step fails. Unfortunately, non-blocking k-ary search trees provide no
efficient way to perform atomic range updates or multi-element modification operations.
Additionally, k-ary search trees are not balanced, so pathological inputs can easily make
them perform poorly. Robertson investigated the implementation of lock-free range
queries in a skip list: range queries increment a version number and a fixed size history
of changes is kept in every node [15]. This solution does not scale well because of the
centralized version number counter. Also, it does not support range updates.

Functional data structures or copy-on-write is another approach to provide lineariz-
able range queries. Unfortunately, this requires copying all nodes in a path to the root in
a tree data structure which induces overhead and makes the root a contended hot spot.



The Snap tree data structure [2] provides a fast O(1) linearizable clone operation by
letting subsequent write operations create a new version of the tree. Linearizable range
queries can be performed in a Snap tree by first creating a clone and then performing
the query in the clone. Snap’s clone operation is performed by marking the root node as
shared and letting subsequent update operations replace shared nodes while traversing the
tree. To ensure that no existing update operation can modify the clone, an epoch object is
used. The clone operation forces new updates to wait for a new epoch object by closing
the current epoch and then waits for existing modifying operations (that have registered
their ongoing operation in the epoch object) before a new epoch object is installed.
The Ctrie data structure [13] also has a fast clone operation whose implementation and
performance characteristics resembles Snap; see [3].

Range operations can be implemented in data structures that utilize fine-grained
locking by acquiring all necessary locks. For example, in a tree data structure where all
elements reside in leaf nodes, the atomicity of the range operation can be ensured by
locking all leaves in the range. This requires locking at least n/k nodes, if the number of
elements in the range is n and at most k elements can be stored in every node. When
n is large or k is small the performance of this approach is limited by the locking
overhead. On the other hand, when n is small or k is large the scalability is limited by
coarse-grained locking. In contrast, as we will see, in CA trees k is dynamic and adapted
at runtime to provide a good trade-off between scalability and locking overhead.

The Leaplist [1] is a concurrent ordered set implementation with native support for
range operations. Leaplist is based on a skip list data structure with fat nodes that can
contain up to k elements. The efficient implementation of the Leaplist uses transactional
memory to acquire locks and to check if read data is valid. The authors of the Leaplist
mention that they tried to derive a Leaplist version based purely on fine-grained locking
but failed [1], so developing a Leaplist without dependence on STM seems to be difficult.
As in trees with fine-grained locking, the size of the locked regions in Leaplists is
fixed and does not adapt according to the contention as in CA trees. Furthermore, the
performance of CA trees does not depend on the availability and performance of STM.

Operations that atomically operate on multiple keys can be implemented in any data
structure by utilizing coarse-grained locking. By using a readers-writer lock, one can
avoid acquiring an exclusive lock of the data structure for some operations. Unfortunately,
locking the whole data structure is detrimental to scalability if the data structure is
contended. The advantage of coarse-grained locking is that it provides the performance
of the protected sequential data structure in the uncontended case. As we will soon see,
CA trees provide the high performance of coarse-grained locking in the uncontended
cases and the scalability of fine-grained synchronization in contended ones by adapting
their granularity of synchronization according to the contention level.

3 Contention Adapting Search Trees

The structure and components of CA trees are as follows. The elements (key-value pairs
or keys) contained in a CA tree are stored in sequential ordered set data structures (e.g.,
AVL trees, skip lists, etc.) which are rooted by base nodes. Each base node contains a lock
that maintains statistics about the current level of the node’s contention. The synchroniza-
tion of accesses to a particular base node is handled independently of all other base nodes.



Fig. 1: The structure of a CA tree.
Numbers denote keys, a node whose
flag is valid is marked with a green
hook; an invalid one with a red cross.

Base nodes are linked together by routing nodes
as depicted in Fig. 1. The routing nodes do
not contain elements; instead they contain keys
which are only used to facilitate searching. As
in ordinary binary search trees, all elements con-
tained in the left branch of a routing node with
keyK have keys smaller thanK and all elements
contained in the right branch have keys greater
than or equal to K. When it is detected that con-
tention on a particular base node B is high, the
subtree rooted by B is split to reduce the con-
tention. Symmetrically, if contention on a base
node B is detected to be low, B is joined with a
neighbor base node to reduce the search path and
to make atomic access of larger parts of the CA
tree more efficient. An example of a split and a
join operation is shown in Fig. 2.

Contention detection is done by simply checking whether waiting for the lock of a
base node was required or not, and increasing or decreasing the statistics counter (which
is located in the base node lock) accordingly. Thresholds for this counter are used to
decide when adaptation shall be performed. A good heuristic is to do adaptation for high
contention eagerly and adaptation for low contention only when the contention has been
low for many operations. This heuristics also avoids too frequent adaptations back and
forth [18]. This mechanism for contention detection has low overhead and works well
in practice. Still, other mechanisms can be used, e.g., based on the back-off time in an
exponential back-off spin lock [12].

Searching in the routing node layer is done without acquiring any locks. However,
as seen in Fig. 1, besides a key, routing nodes also have a valid flag (3or 7) and a lock.
These are used to synchronize between concurrent join operations (i.e., adaptations for
low contention). Since, as explained above, join operations happen relatively infrequently
in CA trees, the locks in the routing nodes do not limit scalability in practice.

Single-key Modification Operations. Operations such as insert and remove start from the
root of the CA tree and search for the base node B under which the element/key that is
given as parameter to the operation will be inserted or removed. Recall that the traversal
of the routing nodes does not acquire any locks. When B is reached, it is locked and
then its valid flag is checked. If this flag is false (7), the search needs to be retried. A
base node becomes invalid when it is replaced by a split or a join. A search that ends up
in an invalid base node thus needs to be retried until a valid base node is found. When
this has happened, the operation is simply forwarded to the sequential data structure
rooted by the base node. Before the base node is unlocked and the operation completes,
we check if enough contention or lack of contention has been detected to justify an
adaptation. If high contention is detected, the elements in the base node are split into two
new base nodes that are linked together by a routing node. Figures 2a and 2b show CA
trees before and after base node B2 and the data structure Y is split (75 is the split key).
In the reverse direction, if low contention is detected, the sequential data structure of the



(a) Initial CA tree (b) CA tree after a split (c) CA tree after a join

Fig. 2: Effect of the split and join operations on the CA tree of Fig. 2a.

base node B is joined with that of a neighbor base node and the parent routing node of
B is spliced out together with B. Figures 2a and 2c show CA tree structures before and
after base node B2 is spliced out from the tree and the elements of its Y structure are
joined with those of X . We refer to [18] for pseudocode and a detailed description of the
algorithms for splitting and joining base nodes and single key operations.

Single-key Read-only Operations. Read-only operations like get, contains, findMax,
etc. can work in a similar fashion as modification operations. However, on a multicore
system, acquiring even a RW lock in read mode for read-only operations can cause bad
scalability due to increased cache coherence traffic. Therefore, the performance and
scalability of read-only operations can be improved if acquiring a lock can be avoided.
By using a sequence lock [10] in the base nodes, read-only operations can attempt to
perform the operation optimistically by checking the sequence number in the lock before
and after the read-only operation has been performed on the base node. If the optimistic
attempt fails, the base node lock can be acquired non-optimistically. This sequence lock
optimization avoids writing to shared memory in the common case when the base node
is not contended, which greatly improves performance in practice [18]. The concurrency
in the data structure can be further improved by using a sequence lock with support
for concurrent execution of read-only critical sections. By using such a lock, one can
acquire the base node lock in read-only mode when the optimistic read attempt fails,
and thus allowing concurrent reads to read from the base node at the same time. Note
that an optimistic read does not change the statistics counter, because that would involve
writing to shared memory and would defeat the purpose of having such operations. If
the optimistic read fails and the lock is acquired in read mode, our implementation adds
to the contention statistics to decrease the likelihood of optimistic read failures in the
future1.

Multi-element Operations. CA trees also support operations that atomically operate on
several keys, such as bulk insert, bulk remove, and swap operations that swap the values
associated with two keys. Generic pseudocode for such operations appears in Fig. 4a; its

1 We perform the change to the contention statistics counter non-atomically. Thus, it is possible
for a concurrent read operation to overwrite the change. Note that this does not effect the
correctness of the data structure as it only affects the frequency of its adaptations.



1 void manageCont(BaseNode base, boolean contended) {
2 if (contended) base.lock.statistics += FAIL_CONTRIB;
3 else base.lock.statistics -= SUCC_CONTRIB;
4 if (base.lock.statistics > MAX_CONTENTION) {
5 if (size(base.root) < 2) base.lock.statistics = 0;
6 else highContentionSplit(tree, base, base.parent);
7 } else if (base.lock.statistics < MIN_CONTENTION) {
8 if (base.parent == null) base.lock.statistics = 0;
9 else lowContentionJoin(tree, base, base.parent);

10 }
11 }

(a) Manage contention

1 BaseNode, List<RouteNode>
2 getNextBaseNodeAndPath(BaseNode b, List<RouteNode> p) {
3 List<RouteNode> newPathPart;
4 BaseNode bRet;
5 if (p.isEmpty()) { // The parent of b is the root
6 return null, null;
7 } else {
8 List<RouteNode> rp = p.reverse();
9 if (rp.head().left == b) {

10 bRet, newPathPart =
11 leftmostBaseNodeAndPath(rp.head().right);
12 return bRet, p.append(newPathPart);
13 } else {
14 K pKey = rp.head().key; // pKey = key of parent
15 rp.removeFirst();
16 while (rp.notEmpty()) {
17 if (rp.head().isValid() && pKey < rp.head().key) {
18 bRet, newPathPart =
19 leftmostBaseNodeAndPath(rp.head().right);
20 return bRet, rp.reverse().append(newPathPart);
21 } else {
22 rp.removeFirst();
23 }
24 }
25 }
26 return null, null;
27 }
28 }

(b) Find next base node

Fig. 3: Helper functions for Fig. 4.

helper function manageCont appears in Fig. 3a.
Such operations start by sorting the elements
given as their parameter (line 7). Then all the
base nodes needed for the operations are found
(line 12) and locked (lines 15–16) in sorted order.
Locking base nodes in a specific order prevents
deadlocks. The method lockIsContended in
the base node, locks the base node lock and re-
turn true if contention was detected while lock-
ing it and the method lockNoStats locks the
base node lock without recording any contention.
When multi-element operations are given keys
that all reside in one base node, only this base
node needs to be locked. One simply has to query
the sequential data structure in the current base
node for the maximum key (line 26) to see which
of the given elements must belong to a base node.
This can be compared to data structures that uti-
lize non-adaptive fine-grained synchronization
and thus either need to lock the whole data struc-
ture or all involved nodes individually. Finally,
multi-key operations end by adjusting the con-
tention statistics, unlock all acquired locks, and
split or join one of the base nodes (lines 35–46)
if required.

Range Operations. We will now describe an algorithm for atomic range operations
that locks all base nodes that can contain keys in the range [a, b]. Generic pseudocode
for such operations can be seen in Fig. 4b and its helper function manageCont and
getNextBaseNodeAndPath can be seen in Fig. 3. To prevent deadlocks, the base nodes
are always locked in increasing order of the keys that they can contain. Therefore, the
first base node to lock is the one that can contain the smallest key a in the range. This
first base node can be found (line 5 in Fig. 4b) and locked (line 6) using the algorithm
described for single-key operations [18]. Finding the next base node (line 21 in Fig. 4b)
is not as simple as it might first seem, since routing nodes can be spliced out and base
nodes can be split. The two problematic cases that may occur are illustrated in Fig. 2.
Suppose that the base node marked B1 has been found through the search path with
routing nodes with keys 80, 40, 70, 60 as depicted in Fig. 2a. If the tree stays as depicted
in Fig. 2a, the base node B2 would be the next base node. However, B2 may have been
spliced out while the range operation was traversing the routing nodes (Fig. 2c) or split
(Fig. 2b). If one of these cases happens, we will detect this since we will end up in an
invalid base node in which case the attempt to find the next base node will be retried.
When we find the next base node we will not end up in the same invalid base node twice
if the following algorithm is applied (also depicted in Fig. 3b):

1. If the last locked base node is the left child of its parent routing node P then find the
leftmost base node in the right child of P (Fig. 3b, line 11).



2. Otherwise, follow the reverse search path from P until a valid routing node R with
a key greater than the key of P is found (Fig. 3b, line 17). If such an R is not found,
the current base node is the rightmost base node in the tree so all required base
nodes are already locked (Fig. 3b, lines 6 and 26). Otherwise, find the leftmost base
node in the right branch of R (Fig. 3b, line 19).

The argument why this algorithm is correct is briefly as follows. For case 1, note that
the parent of a base node is guaranteed to stay the same while the base node is valid; cf.
also [16]. For case 2, note that once we have locked a valid base node we know that no
routing nodes can be added to the search path that was used to find the base node, since
the base node in the top of the path must be locked for a new routing node to be linked
in. Also, the above algorithm never ends up in the same invalid base node more than
once since the effect of a split or a join is visible after the involved base nodes have been
unlocked. Finally, if the algorithm ever finds a base node B2 that is locked and valid
and the previously locked base node is B1, then there cannot be any other base node B′

containing keys between the maximum key of B1 and the minimum key of B2. This is
true because if a split or a join had created such a B′, then B2 would not be valid.

An Optimistic Read Optimization for Range Queries. For the same reasons, as discussed
previously for single-key read-only operations, it can be advantageous to perform range
queries without writing to shared memory. This can be done by first reading the sequence
numbers (in the locks) and validating the base nodes containing the elements in the
range. This optimistic attempt is aborted if a sequence number indicates that a write
operation is currently changing the content of the base node. After acquiring sequence
numbers for all involved base nodes, the range query is continued by reading all elements
in the range, checking the sequence number again after the elements in a base node
have been read. If the sequence numbers have not changed from the initial scan to after
the elements have been read, then one can be sure that no write has interfered with the
operation. Thus, the range query will appear to be atomic. As soon as a validation of a
sequence number fails or inconsistent state is detected in the sequential data structure,
the optimistic attempt will abort. Range queries for which the optimistic attempt failed
are performed by acquiring the base node locks belonging to the range in read mode.

Contention Statistics in Multi-element Operations. A multi-element operation performed
by non-optimistic locking that only requires one base node changes the contention
statistics counter in the same way as single-element operations and also uses the same
split and join thresholds as single-element operations. The pseudocode that handles
contention in this case can be found in Fig. 3a and is called from line 36 in Fig. 4a and
line 37 in Fig. 4b. When contention is detected, the contention statistics counter in that
base node is increased (line 2) to make a base node split more likely and otherwise the
contention statistics counter is decreased (line 3) to make a base node join more likely.
Lines 4 to 10 check if one of the thresholds for adaptation has been reached and performs
the appropriate adaptation in that case.

If a multi-element operation performed by non-optimistic locking requires more
than one base node, the contention statistics counter is decreased (lines 42–43 in Fig. 4a
and lines 44–45 in Fig. 4b) in all involved base nodes to reduce the chance that future



1 Object[] doBulkOp(CATree tree, Op op, K[] keys, Object[] es) {
2 keys = keys.clone();
3 es = es.clone();
4 Object[] returnArray = new Object[keys.size];
5 boolean first = true;
6 boolean firstContended = true;
7 sort(keys, es);
8 Stack<BaseNode> lockedBaseNodes = new Stack<BaseNode>();
9 int i = 0;

10 while (i < keys.size()) {
11 find_base_node_for_key:
12 BaseNode baseNode = getBaseNode(tree, keys[i]);
13 if (baseNode != lockedBaseNodes.top()) {
14 if (first) {
15 firstContended = baseNode.lockIsContended();
16 } else baseNode.lockNoStats();
17 if (!baseNode.isValid()) {
18 baseNode.unlock();
19 goto find_base_node_for_key; // Retry
20 }
21 lockedBaseNodes.push(baseNode);
22 }
23 first = false;
24 returnArray[i] = op.execute(baseNode.root, keys[i], es[i]);
25 i++;
26 K maxKey = baseNode.maxKey();
27 while (i < keys.size() && maxKey != null
28 && keys[i] <= maxKey) {
29 returnArray[i] = op.execute(baseNode.root,
30 keys[i], es[i]);
31 i++;
32 }
33 }
34 BaseNode[] lockedBaseNodesArray = lockedBaseNodes.toArray();
35 if (lockedBaseNodes.size() == 1) {
36 manageCont(lockedBaseNodesArray[0], firstContended);
37 lockedBaseNodesArray[0].unlock();
38 } else {
39 for (int i = 0; i < lockedBaseNodes.size(); i++) {
40 baseNode = lockedBaseNodesArray[i];
41 if (i == (lockedBaseNodes.size()-1)) {
42 manageCont(baseNode, false);
43 } else baseNode.lock.statistics -= SUCC_CONTRIB;
44 baseNode.unlock();
45 }
46 }
47 return returnArray;
48 }

(a) Bulk operations

1 Object[] rangeOp(CATree tree, Op op, K lo, K hi) {
2 List<RouteNode> path; BaseNode baseNode;
3 Stack<BaseNode> lockedBaseNodes = new Stack<BaseNode>();
4 fetch_first_node:
5 baseNode, path = getBaseNodeAndPath(lo);
6 boolean firstContended = baseNode.lockIsContended();
7 if (!baseNode.isValid()) {
8 baseNode.unlock();
9 goto fetch_first_node; // Retry

10 }
11 while (true) {
12 lockedBaseNodes.push(baseNode);
13 K baseNodeMaxKey = baseNode.maxKey();
14 if (baseNodeMaxKey != null && hi <= baseNodeMaxKey) {
15 break; // All needed base nodes are locked
16 }
17 BaseNode lastLockedBaseNode = baseNode;
18 search_next_base_node:
19 List<RouteNode> pathBackup = path.clone();
20 baseNode, path =
21 getNextBaseNodeAndPath(lastLockedBaseNode, path);
22 if (baseNode == null) {
23 break; // All needed base nodes are locked
24 }
25 baseNode.lockNoStats();
26 if (!baseNode.isValid()) {
27 baseNode.unlock();
28 path = pathBackup;
29 goto search_next_base_node; // Retry
30 }
31 }
32 Buffer<Object> retBuff = new Buffer<Object>();
33 BaseNode[] lockedBaseNodesArray = lockedBaseNodes.toArray();
34 if (lockedBaseNodesArray.size() == 1) {
35 baseNode = lockedBaseNodesArray[0];
36 retBuff.add(performOpToKeysInRange(baseNode, lo, hi, op));
37 manageCont(baseNode, firstContended);
38 baseNode.unlock();
39 } else {
40 for (int i = 0; i < lockedBaseNodes.size(); i++) {
41 baseNode = lockedBaseNodesArray[i];
42 retBuff.add(performOpToKeysInRange(baseNode, lo, hi, op));
43 if (i == (lockedBaseNodes.size()-1)) {
44 manageCont(baseNode, false);
45 } else baseNode.lock.statistics -= SUCC_CONTRIB;
46 baseNode.unlock();
47 }
48 }
49 return retBuff.toArray();
50 }

(b) Range operations

Fig. 4: Pseudocode for bulk operations and range operations.

multi-element operations will require more than one base node. Before unlocking the
last base node, low-contention join or high-contention split is performed on that base
node if the thresholds are reached (line 42 in Fig. 4a and line 44 in Fig. 4b).

Range operations where the optimistic attempt succeeds do not change the contention
statistics of any of the base nodes that they use. Doing so would defend the purpose of
the optimistic attempt which is to avoid writing to shared state. However, if the optimistic
attempt fails, the contention statistics is updated as described before.

Correctness. In a previous publication [18] we provided proofs for that the algorithm
for single-key operations is deadlock free, livelock free as well as a proof sketch for
its linearizability. Here, we will briefly repeat the outlines of the proofs for single-key
operations and provide a proof sketch that the properties deadlock freedom, livelock
freedom and linearizability are all provided by CA trees when extended with the range
operations and bulk operations that we have described in detail in this paper. The
interested reader can find more detailed proofs in a technical report available online [16].



Deadlock freedom can be shown by proving that all locks are acquired in a specific
order. All single-key operations (except operations that perform a low-contention join)
acquire a single lock; cf. [16]. Low-contention join can acquire base node locks in
different orders but since this is done with a non-blocking try lock call and all locks that
the operation is holding are released if the try lock call fails, this cannot cause a deadlock.
The proof for deadlock freedom can easily be extended to also include bulk operations
and range operations that we have described in this paper. As presented earlier, these
operations acquire the base node locks in a specific order (increasing order of the keys
that they can store), with the exception that they might also perform a low-contention
join which cannot cause deadlocks as we have described above. Thus, a CA tree with
multi-element operations is deadlock free since there is a specific order in which the
locks are acquired. Whenever locks are acquired in a different order, this is done with a
try lock call and all held locks are released if the try lock call fails.

Livelock freedom can be shown by proving that when an operation or part of an
operation has to be retried due to interference from another thread, some other thread
must have made progress. The two types of retries are the same for both multi-element
operations and single-key operations. The first type of retry can happen in the function
for low-contention join and is caused by a concurrent low-contention join that removes
a routing node. This can not cause a livelock since, if a retry is triggered at this point,
another thread must have successfully spliced out a routing node from the tree and this
routing node will not be observed when we retry; cf. [16]. The second type of retry
happens when an invalid base node is observed. An invalid base node is only observed
if another thread has successfully performed a contention-adapting split or join which
means that another thread has made progress. Single-key operations handle this case
by retrying the whole operation, while operations involving multiple keys only need to
retry the search for the next base node. When the search for a base node is retried the
same invalid base node will not be found since the effect of the split or join that sets the
base node to invalid will be visible after the base node(s) involved in the split or join
has(have) been unlocked.

Linearizability. The linearization point of an operation that locks all base nodes that
it reads from or writes to is at some point while holding the base node locks of all the
base nodes that it operates on. The linearization point of an operation that is successfully
performed with an optimistic read attempt is somewhere between the first and second
sequence number scan. If the optimistic read attempt fails, the operation will instead
acquire the locks non-optimistically and the linearization point will be at some point
while holding all the base node locks. It can be proven [16] that CA trees maintain the
following property: If a thread t has searched in a CA tree for a key K using the binary
search tree property and ended up in base nodeB that it has locked and validated, thenK
must be in B and not in any other base node if it is in the abstract set represented by the
CA tree. Using this property as well as the properties mentioned above in the arguments
for the correctness of range operations it is easy to see that the CA tree operations appear
to happen atomically at their linearization points, since they are either holding locks
of all base nodes that can contain keys involved in the operation or ensuring that no
other thread has changed any key involved in the operation while the operation is being
performed by the final check of the sequence numbers in the sequence locks.



Flexibility of CA Trees. A split operation in an ordered set data structure splits the data
structure into two data structures so that all elements in one are smaller than the elements
in the other. The join operation merges two data structures where the greatest key in
one of them is smaller than the smallest key in the other. Any sequential ordered set
data structure that has efficient support for the split and join operations can be used to
store elements under the base nodes of CA trees. This property makes CA trees highly
flexible since the underlying sequential data structure can be changed without changing
the CA tree structure itself. The sequential data structure component of a CA tree could
be passed as a parameter by the user when creating a CA tree instance. One could even
change the sequential ordered set data structure at run time depending on which type of
operations are most frequent; however, it is beyond the scope of this paper to investigate
the effect of this possibility.

Many ordered set data structures support efficient split and join operations including
red-black trees and AVL trees that do these operations in O(log(N)) time [9, 19]. Skip
lists are randomized data structures for ordered sets that also have efficient support for
split2 and join [14]. By using both back and forward pointers in the skip list, both split
and join as well as maxKey have efficient implementations; in fact constant time in skip
lists with a fixed number of levels. Skip lists also provide efficient support for range
operations since all elements are connected in an ordered list at the top level of a skip
list. Using a skip list with so called fat nodes, i.e., nodes that contain more than one
element, we can further increase the performance of range operation due to improved
locality. We will experiment with AVL trees and skip lists with fat nodes in the next
section. Our skip list implementation can store up to k elements in its nodes. The nodes
are split if an insert would cause a node to contain k+ 1 elements, and nodes are spliced
out if a remove operation would create an empty node. The keys in the skip list are
kept in compact arrays to improve cache locality when searching and performing range
operations.

4 Experiments

Let us now investigate the scalability of two CA tree variants: one with an AVL tree
as sequential structure (CA-AVL) and one with a skip list with fat nodes (CA-SL) as
sequential structure. We compare them against the lock-free k-ary search tree [3] (k-ary),
the Snap tree [2] (Snap) and a lock-free skip list (SkipList). All implementations are those
provided by the authors. SkipList is implemented by Doug Lea in the Java Foundation
Classes as the class ConcurrentSkipListMap.3

SkipList marked with dashed gray lines in the graphs does not cater for linearizable
range queries nor range updates. We include SkipList in the measurements only to show
the kind of scalability one can expect from a lock-free skip list data structure if one is

2 The efficient skip list split operation splits the data structure so that on average half the keys
will be in each resulting split.

3 We do not compare experimentally against the Leaplist [1] whose main implementation is in C.
Prototype implementations of the Liplist in Java were sent to us by its authors, but they ended
up in deadlocks when running our benchmarks which prevented us from obtaining reliable
measurements. Instead, we refer to Section 2 for an analytic comparison to the Leaplist.



not concerned about consistency of results from range operations. Range operations are
implemented in SkipList by calling the subSet method which returns an iterable view
of the elements in the range. Since changes in SkipList are reflected in the view returned
by subSet and vice versa, range operations are not atomic.

In contrast, the k-ary search tree supports linearizable range queries and the Snap
tree supports linearizable range queries through the clone method. However, neither the
k-ary nor the Snap tree provide support for linearizable range updates. In the scenarios
where we measure range updates we implement them in these data structures by using a
frequent read optimized readers-writer lock4 with a read indicator that has one dedicated
cache line per thread. Thus, all operations except range updates acquire the RW-lock in
read mode. We have confirmed that this method has negligible overhead for all cases
where range updates are not used, but use the implementations of the data structures
without range update support in scenarios that do not have range updates.

We use k = 32 (maximum number of elements in nodes) both for CA-SL and k-ary
trees. This value provides a good trade-off between performance of range operations
and performance of single-key modification operations. For the CA trees, we initialize
the contention statistics counters of the locks to 0 and add 250 to the counter to indicate
contention; we decrease the counter by 1 to indicate low contention. The thresholds
−1000 and 1000 are used for low contention and high contention adaptations.

The benchmark we use measures throughput of a mix of operations performed by
N threads on the same data structure during T seconds. The keys and values for the
operations get, insert and remove as well as the starting key for range operations are
randomly generated from a range of size R. The data structure is pre-filled before the
start of each benchmark run by performing R/2 insert operations. In all experiments
presented in this paper R = 1000000, thus we create a data structure containing roughly
500000 elements. In all captions, benchmark scenarios are described by a strings of the
form w:A% r:B% q:C%-R1 u:D%-R2, meaning that on the created data structure the
benchmark performs (A/2)% insert, (A/2)% remove, B% get operations, C% range
queries of maximum range sizeR1, andD% range updates with maximum range sizeR2.
The size of each range operation is randomly generated between 1 and the maximum
range size. The benchmarks presented in this paper were run on a machine with four
AMD Opteron 6276 (2.3 GHz, 16 cores, 16M L2/16M L3 Cache), giving a total of 64
physical cores and 128 GB or RAM, running Linux 3.10-amd64 and Oracle Hotspot
JVM 1.8.0_31 (started with parameters -Xmx4g, -Xms4g, -server and -d64). 5 The
experiments for each benchmark scenario were run in a separate JVM instance and we
performed a warm up run of 10 seconds followed by three measurement runs, each
running for 10 seconds. The average of the measurement runs as well as error bars for
the minimum and maximum run are shown in the graphs, though often the error bars are
very small and therefore not visible.

4 We use the write-preference algorithm [5] for coordination between readers and writers and the
StampedLock from the Java library for mutual exclusion.

5 We also ran experiments on a machine with four Intel(R) Xeon(R) E5-4650 CPUs (2.70GHz
each with eight cores and hyperthreading) both on a NUMA setting and on a single chip,
showing similar performance patterns as on the AMD machine. Results are available online [6].



1 2 4 8 16 32 64
0
2
4
6
8
10
12
14
16
18

CA-AVL
CA-SL
k-ary
SkipList
Snap

(a) w:20% r:55% q:25%-10
1 2 4 8 16 32 64

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

(b) w:50% r:25% q:25%-1000

1 2 4 8 16 32 64
0

1

2

3

4

5

(c) w:20% r:55% q:25%-1000
1 2 4 8 16 32 64

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(d) w:20% r:55% q:25%-10000

Fig. 5: Scalability of throughput (ops/µs) on the y-axis and thread count on the x-axis.

Benchmarks without Range Updates. Let us first discuss the performance results in
Fig. 5, showing scenarios without range updates. Figure 5a, which shows throughput
in a scenario with a moderate amount of modifications (20%) and small range queries,
shows that the k-ary and CA-AVL tree perform best in this scenario, tightly followed
by the CA-SL and SkipList with the non-atomic range queries. We also note that the
Snap tree does not scale well in this scenario, which is not surprising since a range
query with a small range size will eventually cause the creation of a copy of every node
in the tree. Let us now look at Fig. 5b showing throughputs in a scenario with many
modifications (50%) and larger range queries, and Fig. 5c corresponding to a scenario
with the same maximum range query size and a more moderate modification rate (20%).
First of all, the better cache locality for range queries in CA-SL and k-ary trees is visible
in these scenarios where the range sizes are larger. k-ary only beats CA-AVL with a
small amount up to 32 threads and then k-ary’s performance drops. This performance
drop might be caused by its starvation issue in the range query operation that can cause a
range query to be retried many times (possibly forever). This can be compared to the CA
trees that acquire locks for reads if the first optimistic attempt fails and thus reducing the
risk of retries. The scalability of the CA trees shown in Fig. 5b, i.e., in a scenario with
50% modification operations, shows that the range queries in the CA trees tolerate high
contention. Finally, the scenario of Fig. 5d with very wide range queries and moderate
modification rate (20%) shows both the promise and the limit in the scalability of CA-SL.



1 2 4 8 16 32 64
0
1
2
3
4
5
6
7
8
9

CA-AVL
CA-SL
k-ary
SkipList
Snap

(a) w:5% r:44% q:50%-100 u:1%-100
1 2 4 8 16 32 64

0
1
2
3
4
5
6
7
8
9

(b) w:1% r:44% q:40%-100 u:15%-100

1 2 4 8 16 32 64
0

2

4

6

8

10

12

14

(c) w:3% r:27% q:50%-10 u:20%-10
1 2 4 8 16 32 64

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(d) w:3% r:27% q:50%-10000 u:20%-10000

Fig. 6: Scalability of throughput (ops/µs) on the y-axis and thread count on the x-axis.

However, we note that SkipList, which does not even provide atomic range queries, does
not beat CA-SL that outperforms the other data structures by at least 57% at 16 threads.

Benchmarks with Range Updates. Let us now look at the scenarios that also contain
range updates shown in Fig. 6. The first of them (Fig. 6a) shows that k-ary tree’s
scalability flattens out between 16 and 32 threads even with as little as 1% range updates.
Instead, the CA trees provide good scalability all the way. Remember that we wrap the
k-ary operations in critical sections protected by an RW-lock to provide linearizable
range updates in the k-ary tree. In the scenario of Fig. 6b, where the percentage of
range updates is 15%, we see that the k-ary tree does not scale at all while the CA trees
and SkipList with the non-atomic range operations scale very well, outperforming the
k-ary tree with more than 1200% in this case. The two scenarios in Fig. 6c and 6d have
the same rate of operations but different maximum size for range queries and range
updates. Their results clearly show the difference in performance characteristics that can
be obtained by changing the sequential data structure component of a CA tree. CA-SL
is faster for wider range operations due to its fat nodes providing good cache locality,
but CA-SL is generally slower than the CA-AVL in scenarios with small range sizes.
In Fig. 6d, where the conflict rate between operations is high, CA-SL reaches its peak
performance at 32 threads where it outperforms all other data structures by more than
two times.



R 10 100 1000 10000
CA-SL 14.4 8.8 4.0 2.5

CA-AVL 15.6 8.7 3.6 2.2

(a) w:3% r:27% q:50%-R u:20%-R

threads 2 4 8 16 32 64
CA-SL 0.36 0.73 1.2 1.9 2.7 4.0

CA-AVL 0.34 0.68 1.1 1.6 2.4 3.6

(b) w:3% r:27% q:50%-1000 u:20%-1000

Table 1: Average base node counts (in k) at the end of running two sets of benchmarks:
one using 64 threads but varying the range sizeR, and one varying the number of threads.

We also report average base node counts for the CA trees in the end of running two
sets of scenarios. The numbers in Table 1a show node counts (in k) for running with
64 threads but varying the maximum range sizeR. Table 1b shows node counts (also in k)
for scenarios with R fixed to 1000 but varying the number of threads. These numbers
confirm that the CA trees’ synchronization is adapting both to the contention level
(increasing the number of threads results in more base nodes) and to the access patterns
(increased range size results in fewer base nodes). We also confirmed by increasing
the running time of the experiments that the number of base nodes stabilizes around a
specific value for each scenario, which means that base nodes do not get split indefinitely.

5 Concluding Remarks

Given the diversity in sizes and heterogeneity of multicores, it seems rather obvious that
current and future applications will benefit from, if not require, data structures that can
adapt dynamically to the amount of concurrency and the usage patterns of applications.

This paper has advocated the use of CA trees, a new family of lock-based concurrent
data structures for ordered sets of keys and key-value pair dictionaries. CA trees’ salient
feature is their ability to adapt their synchronization granularity according to the current
contention level and access patterns. Furthermore, CA trees are flexible and efficiently
support a wide variety of operations: single-key operations, multi-element operations,
range queries and range updates. Our experimental evaluation has demonstrated the good
scalability and superior performance of CA trees compared to state-of-the-art lock-free
concurrent data structures in a variety of scenarios.

In other work [17], we have described the use of CA trees for speeding and scaling
up single-key operations of the ordered_set component of the Erlang Term Storage,
Erlang’s in-memory key-value store. We intend to extend that work with support for
atomic multi-element and range operations and evaluate the performance benefits of
doing so in “real-world” applications. The experimental results in this paper strongly
suggest that the performance gains will be substantial. In addition, we intend to investi-
gate CA trees with more kinds of adaptations: for example, adaptations in the underlying
sequential data structure component.

References

1. H. Avni, N. Shavit, and A. Suissa. Leaplist: Lessons learned in designing TM-supported
range queries. In Proceedings of the 2013 ACM Symposium on Principles of Distributed
Computing, PODC ’13, pages 299–308, New York, NY, USA, 2013. ACM.



2. N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical concurrent binary search
tree. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 257–268. ACM, 2010.

3. T. Brown and H. Avni. Range queries in non-blocking k-ary search trees. In R. Baldoni,
P. Flocchini, and R. Binoy, editors, Principles of Distributed Systems, volume 7702 of Lecture
Notes in Computer Science, pages 31–45. Springer, 2012.

4. T. Brown and J. Helga. Non-blocking k-ary search trees. In A. Fernàndez Anta, G. Lipari,
and M. Roy, editors, Principles of Distributed Systems, volume 7109 of Lecture Notes in
Computer Science, pages 207–221. Springer, 2011.

5. I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit. NUMA-aware
reader-writer locks. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 157–166, New York, NY, USA, 2013. ACM.

6. CA Trees. http://www.it.uu.se/research/group/languages/software/ca_tree.
7. T. Crain, V. Gramoli, and M. Raynal. A speculation-friendly binary search tree. In Proceedings

of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’12, pages 161–170, New York, NY, USA, 2012. ACM.

8. K. Fraser. Practical lock-freedom. PhD thesis, University of Cambridge Computer Laboratory,
2004.

9. D. E. Knuth. The Art of Computer Programming: Sorting and Searching, vol. 3. Addison-
Wesley, Reading, 2nd edition, 1998.

10. C. Lameter. Effective synchronization on Linux/NUMA systems. In Proc. of the Gelato
Federation Meeting, 2005.

11. A. Natarajan and N. Mittal. Fast concurrent lock-free binary search trees. In Proceedings of
the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’14, pages 317–328, New York, NY, USA, 2014. ACM.

12. E. Österlund and W. Löwe. Concurrent transformation components using contention context
sensors. In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pages 223–234, New York, NY, USA, 2014. ACM.

13. A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky. Concurrent tries with efficient
non-blocking snapshots. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’12, pages 151–160, NY, USA, 2012. ACM.

14. W. Pugh. A skip list cookbook. Technical report, College Park, MD, USA, 1990.
15. C. Robertson. Implementing contention-friendly range queries in non-blocking key-value

stores. Bachelor thesis, The University of Sydney, Nov. 2014.
16. K. Sagonas and K. Winblad. Contention adapting trees. Tech. Report, available in [6], 2014.
17. K. Sagonas and K. Winblad. More scalable ordered set for ETS using adaptation. In ACM

Erlang Workshop, pages 3–11. ACM, Sept. 2014.
18. K. Sagonas and K. Winblad. Contention adapting trees. In 14th International Symposium on

Parallel and Distributed Computing, pages 215–224. IEEE, June 2015.
19. R. E. Tarjan. Data Structures and Network Algorithms, volume 14. SIAM, 1983.

http://www.it.uu.se/research/group/languages/software/ca_tree

	Efficient Support for Range Queries and Range Updates Using Contention Adapting Search Trees

