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Abstract—With multicores being ubiquitous, concurrent data
structures are becoming increasingly important. This paper
proposes a novel approach to concurrent data structure design
where the data structure collects statistics about contention and
adapts dynamically according to this statistics. We use this
approach to create a contention adapting binary search tree
(CA tree) that can be used to implement concurrent ordered
sets and maps. Our experimental evaluation shows that CA
trees scale similar to recently proposed algorithms on a big
multicore machine on various scenarios with a larger set size,
and outperform the same data structures in more contended
scenarios and in sequential performance. We also show that CA
trees are well suited for optimization with hardware lock elision.
In short, we propose a practically useful and easy to implement
and show correct concurrent search tree that naturally adapts
to the level of contention.

I. INTRODUCTION

With multicores being widespread, the need for efficient
concurrent data structures has increased. In this paper we
propose a novel adaptive technique for creating concurrent data
structures. Our technique collects statistics about contention
in locks and does local adaptations dynamically to reduce the
contention or to optimize for low contention. This is the first
contribution of this paper. Previous research on adapting to the
level of contention has focused on objects where access cannot
be easily distibuted, such as locks [24], shared counters [13],
[17], stacks and queues [32]. In contrast to these works, our
work targets data structures where the access patterns differ
across parts of the data structure and/or often change during the
lifetime of the program. A concrete example is an ordered map
where the keys are timestamps and new timestamps are inserted
by several threads concurrently while old timestamps are only
accessed rarely. In this scenario, the part of the data structure
containing the most recent timestamps will be highly contended
while the rest of the data structure will be accessed under
low contention. In other scenarios, the amount of concurrent
accesses can vary a lot depending on input, the machine the
program is running on and its load, the program’s phase, etc.

We demonstrate the benefits of our contention adapting
technique by describing and evaluating a data structure for
concurrent ordered sets or maps. We call this data structure
contention adapting search tree or CA tree for short. The design
of CA trees is the second contribution of this paper.

Current scalable data structures for concurrent ordered sets
and maps either use fine-grained locking [2], [6], [12], [14]
or lock-free techniques [7], [10], [15], [16], [20], [26], [27]
to enable parallel operations in the tree. For fine-grained
synchronization, they all pay a price in sequential efficiency
and/or memory usage. Futhermore, they typically do not support
operations that atomically operate on a number of elements.

The CA tree differs from them in that it dynamically optimizes
its synchronization granularity according to the current access
patterns. This way, the CA tree only needs to pay the cost
of fine-grained synchronization in performance and memory
footprint when such synchronization is actually beneficial.

Another nice property of CA trees is that they use a
sequential ordered set or map data structure as an exchangeable
component. The sequential data structure component can be,
for example, an AVL tree [1], a Red-Black tree [4], a Splay
tree [33], or a Skip list [28]. Hence, the resulting CA tree
inherits its performance characteristics from the sequential
component that it uses. We are not aware of any other efficient
concurrent search tree that provides this kind of flexibility.

The next section presents a high level view of CA trees, fol-
lowed by the algorithm (Sect. III) and its properties (Sect. IV).
We then describe optimizations (Sect. V), review related work
(Sect. VI), experimentally compare CA trees against related
data structures and evaluate their performance (Sect. VII). The
paper ends with some concluding remarks (Sect. VIII).

II. A BRIEF OVERVIEW OF CA TREES

As can be seen in Fig. 1, CA trees consist of three layers: one
containing routing nodes, one containing base nodes and one
containing sequential ordered set data structures. Essentially,
the CA tree is an external binary search tree where the routing
nodes are internal nodes whose sole purpose is to direct the
search and the base nodes are the external nodes containing the
actual keys of the items stored. All keys stored under the left
pointer of a routing node are less than the routing node’s key
and all keys stored under the right pointer are greater or equal
to the key. A routing node also has a lock and a valid flag
but these are only used rarely when a routing node is deleted
to adapt to low contention. The nodes with the invalidated
valid flags to the left of the tree in Fig. 1 are the result of the
deletion of the routing node with key 11; nodes marked as
invalid are no longer part of the tree.

A base node contains a statistics collecting (SC) lock, a
valid flag and a sequential ordered set data structure. When
a search in the CA tree ends up in a base node, the SC lock
of the base is acquired. This lock changes its statistics value
during lock acquisition depending on whether the thread had to
wait to get hold of the lock or not. The thread performing the
search has to check the valid flag of the base node (retrying
the operation if it is invalid) before it continues to search the
sequential data structure inside the base node. The statistics in
the SC lock is checked after an operation has been performed
in the sequential data structure and before the lock is unlocked.
When the statistics collected by the SC lock indicate that the
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Fig. 1. The structure of a CA tree. Numbers denote keys, a node whose flag
is valid is marked with a green hook; an invalid one with a red cross.

contention is higher than a certain threshold, the base node
is split by dividing the sequential data structure into two new
base nodes and linking them into the tree with the help of a
new routing node. In the other direction, if the statistics in
some base node A indicate that the contention is lower than a
threshold, then A is joined with a neighbor base node B by
creating a new base node containing the keys from both A and
B to replace B and deleting the parent routing node of A.

III. IMPLEMENTATION

This section describes the implementation of CA trees and
gives arguments for the algorithm’s correctness. We will first
describe the implementation of the two components: SC locks
and sequential ordered set data structures. We will then describe
how to use these components to implement a CA tree.

A. Statistics Collecting Locks

We use a standard mutual exclusion (mutex) lock and an
integer variable to create a statistics collecting lock. Java-like
code for such locks is shown in Fig. 2. The statistics variable
is incremented or decremented after the lock has been taken.
If the statTryLock call succeeds, no contention is detected

1 void statLock(StatLock slock) {
2 if (statTryLock(slock)) {
3 slock.statistics -= SUCC_CONTRIB;
4 return;
5 }
6 lock(slock.lock);
7 slock.statistics += FAIL_CONTRIB;
8 }

Fig. 2. Statistics collecting lock.

and the statistics vari-
able is decremented with
SUCC_CONTRIB. On the other
hand, if the statTryLock

failed, another thread was
holding the lock so the
statistics is incremented
by FAIL_CONTRIB. The code

uses the function statTryLock that just forwards its calls to the
underlying mutex lock and is omitted for brevity.

Two constants MIN_CONTENTION and MAX_CONTENTION are used
to decide when to perform adaptations. If the statistics variable
is greater than MAX_CONTENTION, the data structure adapts by
splitting a base node because the contention is high. Symmet-
rically, it adapts to low contention by joining base nodes when
the statistics variable is less than MIN_CONTENTION. Intuitively
one would like to adapt to high contention fast so that the
available parallelism can be exploited. At least for CA trees,

it is not as urgent to adapt to low contention. The cost for
using a CA tree adapted for slightly more contention than
necessary is low. Therefore, the threshold for adapting to low
contention can be higher than the threshold for adapting to high
contention. This also has the benefit of avoiding too frequent
splitting and joining of nodes. For CA trees we have found
the values MAX_CONTENTION = 1000, MIN_CONTENTION = −1000,
SUCC_CONTRIB = 1 and FAIL_CONTRIB = 250 to work well. These
constants mean that it requires more than 250 uncontended
lock calls for every contented lock call for the statistics to
eventually indicate that low-contention adaptation needs to
happen. Furthermore, it always only requires a few contended
lock calls in sequence for the statistics to indicate that high-
contention adaptation should take place.

The overhead of maintaining statistics can be made very low.
If one places the statistics variable on the same cache line as
the lock data structure, it will be loaded into the core’s private
cache (in exclusive state) after the lock has been acquired and
thus the counter can be updated very efficiently.

B. Ordered Sets with Split and Join Support

The literature contains a variety of data structures suitable
for implementing ordered sets. All of them are efficient for
the common set operations: INSERT, DELETE and LOOKUP. They
either provide amortized, expected or guaranteed O(log(N))
complexity for these operations as well as ordered traversal of
the set in time linear in the size of the set. For efficient high
and low-contention adaptation we also need efficient support
for the SPLIT and JOIN operations.

The SPLIT operation splits an ordered set into two so that the
maximum key in one of the sets is smaller than the minimum
key in the other. This operation can be implemented in binary
search trees by splicing out the root node of the tree and
inserting the old root into one of its subtrees. Thus, SPLIT is
as efficient as the tree’s INSERT operation.

Formally, the input of the JOIN operation is two instances
of the data structure where the minimum key in one of them
is greater than the maximum key in the other. The resulting
ordered set data structure contains the union of the keys of
the two input data structures. AVL trees and red-black trees
support this operation in guaranteed O(log(N)) time. In this
paper we experiment with AVL trees [1] as the sequential
ordered set data structure. A description of the JOIN operation
for AVL trees can be found in Knuth’s book [22, page 474].

C. Implementing Contention Adapting Trees

Figure 3 shows the main algorithm for all operations in a
CA tree. Since the algorithm is generic it can be used for all
common ordered set operations (e.g. INSERT, LOOKUP, etc.).
The parameter named operation is the sequential data structure
operation that shall be applied to the CA tree. The algorithm
performs the following steps: (i) Lines 4 to 8 search the routing
layer from the root of the tree until the search ends up in a base
node. (ii) Lines 10 to 13 lock the statistics lock in the base
node and check the valid flag. The operation has to be restarted
if the valid flag is false. In that case the lock is unlocked and
the operation is restarted. (iii) Line 15 executes the operation
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1 Object doOperation(CATree tree, Op operation, Key key) {
2 RoutingNode prevNode = null;
3 Object currNode = tree.root;
4 while (currNode isInstanceOf RoutingNode) {
5 prevNode = currNode;
6 if (key < currNode.key) currNode = currNode.left;
7 else currNode = currNode.right;
8 }
9 BaseNode base = currNode asInstanceOf BaseNode;

10 statLock(base.lock);
11 if (base.valid == false) {
12 statUnlock(base.lock);
13 return doOperation(tree, operation, key); // retry
14 } else {
15 Object result = operation.execute(base.root, key);
16 if (base.lock.statistics > MAX_CONTENTION) {
17 if (size(base.root) < 2) base.lock.statistics = 0;
18 else highContentionSplit(tree, base, prevNode);
19 } else if (base.lock.statistics < MIN_CONTENTION) {
20 if (prevNode == null) base.lock.statistics = 0;
21 else lowContentionJoin(tree, base, prevNode);
22 }
23 statUnlock(base.lock);
24 return result;
25 }
26 }

Fig. 3. The CA tree algorithm.

on the sequential ordered set data structure inside the base node.
(iv) Lines 16 to 22 evaluate the statistics variable and adapt the
CA tree accordingly. Here one can add additional constraints
for the adaptation. For example one might want to limit the
total number of routing nodes or the number of routing nodes
that can be traversed before a base node is reached. (v) Lines
23 and 24 finish the operation by unlocking the base node and
returning the result from the operation. Below we describe the
algorithms for high and low contention adaptation in detail.

D. High-contention Adaptation
High-contention adaptation is performed by splitting the

contended base node. This creates two new base nodes each
containing roughly half the nodes of the original tree. These
two new nodes are linked with a new routing node containing
a routing key K so that all keys in the left branch are smaller
than K and the right branch contains the rest of the keys.
Figure 4 contains the code. pickSplitKey (line 3) picks a key
that ideally divides the sequential ordered set data structure in
half. If this data structure is a tree, a convenient way of doing
this is to select the key of the root node. The statement on
line 4 splits the data structure according to the split key.

The new routing node can be linked in at the place of the
old base nodes without taking any additional locks or checking
that the parent node is still the parent. The reason why it is
correct to do so is because the parent of a base node stays
the same during the entire lifetime of the node. It is easy to
see that highContentionSplit preserves this invariant. The next
section will make it clear that lowContentionJoin also preserves
the same invariant since it does not delete the parent of a base
node that is valid.

Notice that it is important to mark the old base as invalid
before unlocking its lock as is done in line 10. It is safe to
replace the old base node since threads that have ended up in
the old base node will retry their operation when they see that
the old base node is invalid.

1 void highContentionSplit(CATree tree, BaseNode base,
2 RoutingNode parent) {
3 Key splitKey = pickSplitKey(base.root);
4 Tuple<Tree> split = splitTree(splitKey, base.root);
5 RoutingNode newRoute =
6 RouteNode(BaseNode(split.elem1), splitKey, BaseNode(split.elem2));
7 if (parent == null) tree.root = newRoute;
8 else if (parent.left == base) parent.left = newRoute;
9 else parent.right = newRoute;

10 base.valid = false;
11 }

Fig. 4. High-contention adaptation.

E. Low-contention Adaptation

Figure 5 shows the algorithm for lowContentionJoin. The
goal of the function is to splice out the base node with low
contention from the tree and transfer its data items to the
neighboring base node. The code looks complicated at first
glance but is actually very simple. Many of the if statements
just handle symmetric cases for the left and right branch of
a node. In fact, we just show the code for the case when the
base node with low contention (called base in the code) is the
left child of its parent routing node. (The rest of the code is
completely symmetric.) Also, the following description will
just explain the case when the base node with low contention
is the left child of its parent.

We first note that, as discussed in the previous section, if
we find a base node base from a parent routing node parent,
the base node is guaranteed to not get a new parent as a result
of a concurrent change from another thread. This will be true
as long as the base node is locked and marked valid (which it
is when entering lowContentionJoin).

In line 4 we find the leftmost base node of the parent’s right
branch. We try to lock this neighborBase in line 5. If we fail to
lock it or if neighborBase is invalid (line 7 checks this) we reset
the lock statistics and return without doing any adaptation. One
can view these cases as that it is not a good idea to do adaptation
now because the neighbor seems to be contended. Note that if
we instead of the statTryLock call had used a forcing lock call,
one could arrive in a deadlock situation because our base could
be another thread’s neighborBase and vice versa. In line 11
we know that there are no keys between the maximum key
in base and the minimum key in neighborBase. (If there were,
neighborBase would not have been valid.) We also know that
there can not be any keys between base and neighborBase as
long as we are holding the locks of base and neighborBase.

To complete the operation, we will first splice out the
parent of base so that threads will be routed to the location
of neighborBase instead of base. To do this we can change the
link to parent in the grandparent of base so that it points to the
right child of parent. Splicing out the parent without acquiring
any locks is not safe. The parent’s right child pointer could be
changed at any time by a concurrent low-contention adapting
thread. Additionally, the grandparent could be deleted at any
time by a concurrent low-contention adapting thread. To protect
from concurrent threads changing the parent or the grandparent
we require that the lock of both parent and grandparent (if the
grandparent is not the root pointer) are acquired before we do
the splicing. After acquiring the grandparent’s lock, we also
need to ensure that the grandparent has not been spliced out
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1 void lowContentionJoin(CATree tree, BaseNode base,
2 RoutingNode parent) {
3 if (parent.left == base) {
4 BaseNode neighborBase = leftmostBaseNode(parent.right);
5 if (!statTryLock(neighborBase.lock)) {
6 base.lock.statistics = 0;
7 } else if (!neighborBase.valid) {
8 statUnlock(neighborBase.lock);
9 base.lock.statistics = 0;

10 } else {
11 lock(parent.lock);
12 parent.valid = false;
13 neighborBase.valid = false;
14 base.valid = false;
15 RoutingNode gparent = null; // gparent = grandparent
16 do {
17 if (gparent != null) unlock(gparent.lock);
18 gparent = parentOf(parent, tree);
19 if (gparent != null) lock(gparent.lock);
20 } while (gparent != null && !gparent.valid);
21 if (gparent == null) {
22 tree.root = parent.right;
23 } else if (gparent.left == parent) {
24 gparent.left = parent.right;
25 } else {
26 gparent.right = parent.right;
27 }
28 unlock(parent.lock);
29 if (gparent != null) unlock(gparent.lock);
30 BaseNode newNeighborBase =
31 BaseNode(joinTrees(base.root, neighborBase.root));
32 RoutingNode neighborBaseParent = null;
33 if(parent.right == neighborBase) neighborBaseParent = gparent;
34 else neighborBaseParent = leftmostRouteNode(parent.right);
35 if(neighborBaseParent == null) {
36 tree.root = newNeighborBase;
37 } else if (neighborBaseParent.left == neighborBase) {
38 neighborBaseParent.left = newNeighborBase;
39 } else {
40 neighborBaseParent.right = newNeighborBase;
41 }
42 statUnlock(neighborBase.lock);
43 }
44 } else { ... } /* This case is symmetric to the previous one */
45 }

Fig. 5. Low-contention adaptation.

from the tree by checking its valid flag. Acquiring the lock of
the parent (line 11) is straightforward since we know that it
is still our parent as we argued before. Acquiring the lock of
the grandparent (lines 15–20) is a little bit more involved. We
repeatedly search the tree for the parent of parent until we find
that the root pointer points to parent (parentOf returns null) or
until we manage to take the lock of the grandparent and have
verified that it is still in the tree. If the grandparent is the root
pointer, we can be certain that it will not be modified. This
is because if a concurrent low-contention adaptation thread
were to change the root pointer, it would first need to acquire
the lock of base, which it can not. Now we can splice out the
parent (lines 21–27) and unlock the routing node lock(s) that
we have taken (lines 28–29).

At this stage it is safe to link in a new base node containing
the union of the keys in base and neighborBase at the place of
the old neighborBase (lines 30–41). Notice that it is important
that we mark neighborBase and base invalid (lines 13–14) before
we unlock them to make waiting threads retry their operations.
Notice also that the parent of neighborBase might have been
changed by lines 21 to 27 so it would not have been safe to
use the parent of neighborBase at the time of executing line 4.

F. Atomically Accessing Multiple Elements

The algorithm presented in Fig. 3 can be used for operations
such as INSERT, DELETE and LOOKUP that atomically operate
on a single element. For many applications it is also important
to provide support for operations that atomically operate on
multiple of elements. We describe how to efficiently perform
atomic BULK INSERT, BULK DELETE as well as range queries
and updates in a companion document [31].

IV. PROPERTIES

This section presents the properties that CA trees provide:
deadlock freedom, livelock freedom, and linearizability. We
then discuss the time complexity of CA tree operations.

A. Deadlock and Livelock Freedom

We will show that the CA tree algorithm is deadlock free
by showing that all operations either obtain locks in a specific
order so a deadlock cannot occur, or prevent a deadlock
situation by using tryLock which, if unsuccessful, is followed
by the release of the currently held locks. Operations that
call lowContentionJoin can use tryLock (Fig. 5, line 5). If the
tryLock is unsuccessful, lowContentionJoin will return and the
currently held lock will be released (Fig. 3, line 23). Also,
lowContentionJoin is the only function that acquires locks in
the routing nodes. Routing nodes are always locked after the
base node locks. lowContentionJoin always acquires the parent
routing node’s lock before the grandparent routing node’s lock,
so routing node locks are ordered by the distance to the root
of the tree. (Since no operation ever holds two routing node
locks that are at the same level, it is not a problem that there
is no order between routing nodes at the same level.)

A livelock occurs when threads perform some actions that
interfere with each other so that none of them makes any
actual progress. There are only two situations when CA tree
operations need to redo some steps because of interference
from other threads: (i) A thread needs to retry if an invalid
base node is seen. The interfering thread must have completed
an operation in this case. Otherwise no split or join could
have happened. (ii) If the code in Fig. 5 (lines 15–20) needs
to be retried to find the grandparent of a base node, another
thread must have spliced out a routing node and has thus made
progress. The CA tree operations are therefore livelock free.

B. Linearizability

To show that a CA tree operation is linearizable [19], we have
to show that the operation appears to happen instantaneously
at some point during its execution and gives the same result
as the corresponding operation in a sequential ordered set. Let
us consider the algorithm in Fig. 3. First, we will show that
if we perform a search in the routing layer that ends up on
line 15 in Fig. 3, base will point to the base node that must
contain the key we searched for, if it exists in the ordered set.
This property that we call P must hold if CA tree operations
correspond to sequential ordered set operations, since we could
otherwise miss keys. P holds trivially after a CA tree has
been initialized since the CA tree then has only one base node
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that the tree’s root directly points to. A high-contention split
changes a pointer in the routing layer from pointing to the old
split base node B to a new routing node R (Fig. 4, lines 7–9).
As argued in Section III-D, no thread can interfere with this
change. A search will still end up in the base node responsible
for the key searched for after the change since, by definition of
splitTree, all keys less than R’s key will be in the left branch
of R and the rest of the keys will be in its right branch. Let us
assume that a search S1 happens concurrently with the split
and misses the split’s pointer update so it ends up in B. Since
the split invalidates B (Fig. 4, line 10) before B is unlocked
(Fig. 3, line 23), S1 must see that B is invalid and therefore will
retry the search (Fig. 3, line 13). When S1 is retried it cannot
end up in B again since the split removes B from the routing
layer before it unlocks B. We will now argue that P also holds
after a low-contention join when the variable base given as
parameter to the join function (Fig. 5, line 1) is the left child of
its parent routing node. The case when base is the right child
of its parent is symmetric. P trivially holds if neighborBase is
not successfully locked (line 5) or if neighborBase is invalid
(line 7) since the join will not modify the CA tree at all in these
cases. The fist change that the join can do to the routing layer
of the CA tree is to splice out the parent of base (lines 21–27).
No other operation can interfere with this change since we are
holding the lock of both the parent and grandparent routing
nodes; see Section III-E. Let S2 be a search for a key in base

that takes place directly after this step. The parent of base

is replaced with the subtree T located at the right branch of
the parent of base. The search S2 must therefore go to the
leftmost base node in T , which is neighborBase just after the
join’s first change to the routing layer. Note that as we argue in
Section III-E neighborBase must still be the leftmost base node
of T just after we have spliced out base. The next step of the
join is to replace neighborBase with a new base node containing
the keys of both base and neighborBase (lines 35–41). Searches
that happen concurrently with the join and end up in base or
neighborBase will retry the search when the join’s updates are
visible, which can be demonstrated using a similar argument
as for split. Thus, property P holds since split and join are
the only functions that modify the routing layer and P holds
initially as well as before, during and after splits and joins.

The code from line 15 to 23 in Fig. 3 is protected by the base
node lock and thus happens in isolation from other threads. The
modification or reading of the data structure happens between
these lines (line 15). The linearization point can be set to any
point between line 15 to 23 since the operation can appear to
happen at this point from the perspective of all other operations.

C. Balancing and Time Complexity

When a CA tree is accessed sequentially, the execution time
of its operations will depend on the sequential data structure
that is used, the current depth of the routing layer and the
time for low-contention adaptation. Therefore, the sequential
execution time of a CA tree operation op is O(log(N) +D),
given that the maximum depth of the routing layer is D, the
number of keys is N and that the JOIN operation, the SPLIT

operation and op all take O(log(N)) time in the sequential

data structure. One can easily change the CA tree algorithm to
provide better theoretical sequential execution time guarantees
by avoiding base node splits that could lead to a search path
greater than a constant. However, our experience does not
indicate that limiting the search path in the routing layer in
such a way is necessary in practice.

Splitting and joining of base nodes can be seen as a dynamic
optimization of the underlying sequential tree for parallel
execution that only occurs when the statistics indicate that such
an optimization would improve the execution time. Thanks to
the efficient O(log(N)) time JOIN and SPLIT operations that are
supported by several balanced search trees, this optimization
can give very good performance as we will show in Section VII.

V. OPTIMIZATIONS

A. Optimizations for Read-only Operations

A possible performance concern for CA trees in read-heavy
scenarios is that even read-only operations acquire a lock.
On a multicore machine this can become a performance and
scalability bottleneck since acquiring a lock causes some shared
memory to be written. This memory will be invalidated in
the private caches of other cores which may cause future
cache misses and expensive cache coherence traffic. Many
concurrent search trees (both lock-free and lock-based) gain
performance by making read-only operations traverse the tree
without writing to shared memory [6], [12], [14]. Thus, we
present optimizations that can make CA trees perform better in
read-heavy scenarios. Their effect is evaluated in Section VII.

Optimistic readers with sequence locks: A sequence lock
is implemented with one integer counter that is initialized to an
even number [23]. A thread acquires a sequence lock by first
waiting until the counter has an even number and then tries to
increment it by one with an atomic compare-and-swap (CAS)
instruction. To unlock the sequence lock, the integer is just
increased by one to an even number. Threads doing a read-
only critical section can do an invisible optimistic attempt by
checking that the counter has an even number before the critical
section and then checking that it is still the same even number
after the critical section. A thread will fail the optimistic read
attempt if it detects that a writer has interfered. Sequence locks
are badly suited for some complex critical sections where an
intermediate state produced by a writer could lead to a crash or
an infinite loop in a reader. However, LOOKUP operations of a
search tree can safely be made optimistic since the intermediate
state produced by update operations can in the worst case make
the search end up in the wrong node. Since this will be detected
when validating the sequence number after the LOOKUP, it is
not a correctness problem. We have implemented a sequence
lock optimization and evaluate it in Section VII-A. In our
implementation the SC locks in the base nodes use a sequence
lock as mutex. LOOKUPs optimistically try to do an invisible
read and if that fails on the first attempt the operation proceeds
by acquiring the statistics lock.

Multiple parallel readers with readers-writer locks: An-
other optimization is to use a readers-writer lock in the statistics
lock implementation. Similar to the optimistic readers extension
this allows multiple parallel readers for read-only operations
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like LOOKUP. We evaluate this extension in Section VII-B. In
our readers-writer lock implementation we change LOOKUPs to
first check if the statistics lock is not write-locked and acquire
the statistics lock for reading in that case. If the statistics
lock is write-locked, the statistics lock is acquired for write
as normal. The readers-writer lock extension has an advantage
compared to the optimistic readers extensions in languages
without automatic memory management. Since readers are
invisible in the optimistic readers extension some form of
delayed deallocation has to be used for the tree nodes (and for
data stored in them) to avoid freeing memory that is currently
read. This is not necessary when a readers-writer lock is used
since writers get exclusive access to the base nodes. Even
through there are several methods for safe delayed allocation
in languages without automatic memory management such as
C and C++, they often incur a non-negligible overhead [18].
We therefore experimented with the sequence lock in a Java
implementation and the readers-writer lock extension in a C
implementation.

B. Parallel Critical Sections with Hardware Lock Elision

Some support for hardware transactional memory has re-
cently started to become commonplace with Intel’s Haswell
architecture. A promising way to exploit the hardware transac-
tional memory is through hardware lock elision (HLE) [29].
HLE allows ordinary lock-based critical sections to be trans-
formed to transactional regions. A transaction can fail if there
are store instructions that interfere with other store or load
instructions or if the hardware transactional memory runs out
of its capacity. If the transaction fails in the first attempt,
an ordinary lock will be acquired making it impossible for
other threads to enter the critical region. Since the size of the
transactional region is limited by the hardware’s capacity to
store the read and write set of the transaction, an adaptive
approach like the CA tree seems like a perfect fit for exploiting
HLE. CA trees make it possible to dynamically adapt the sizes
of the critical regions to fit the hardware. One could simply
use HLE to implement the SC locks. However this would lead
to unnecessarily many failed transactions because the statistics
counter that is modified inside the critical reader will be a hot
spot. In our implementation, we try to avoid this problem by
letting read-only operations first attempt to acquire the HLE
lock and perform the critical section without reading or writing
the statistics counter. If the first attempt fails, the SC lock is
acquired in write mode and the operation is performed as usual.
We evaluate the effect of HLE in Section VII-B.

C. An Optimization for Highly Contended Base Nodes

A base node that contains only one element cannot be split to
reduce contention. Therefore, we describe an optimization that
puts contended base nodes that just contain a single element
into a different state where operations can manipulate the base
node with atomic CAS instructions or writes without acquiring
the lock. The benefits of this optimization are twofold: blocking
is avoided and the number of writes to shared memory for
modifying operations can be reduced from at least three to one

(just one CAS or write instead of a lock call, a write and an
unlock call).

To do this optimization we start from the “optimistic readers
with sequence locks” optimization described above and add a
state flag and a non-zero indicator to the base nodes. When the
state flag is set to off, the base node is in the normal locking
state and when the state flag is set to on the base node is in
the lock-free state. A base node is transferred to the lock-free
state when a high-contention adaptation is triggered and the
base node contains one or zero elements. The transfer is done
by flipping the state flag and installing the non-zero indicator
while holding the sequence lock. We use a simple non-zero
indicator with one cache line per core in the system to reduce
false sharing between active threads.

Operations such as INSERT or DELETE that modify only one
element start by checking the sequence counter of the base node
lock and then the state flag before they acquire the base node
lock or attempt to perform the operation in a lock-free way. If
the state flag is set to on and the operation can be performed
in the lock-free state, the operation proceeds by registering in
the non-zero indicator. Then the operation checks the sequence
counter in the lock again. If the sequence counter still has the
same value, the operation can proceed to perform the operation
by doing the appropriate CAS or write in the base node before
unregistering in the non-zero indicator. If the sequence counter
has changed, the operation has to unregister in the non-zero
indicator and retry the operation because another operation
has requested exclusive access to the base node. Operations
that acquire the lock of a base node also have to check the
state flag after the lock has been acquired and either transfer
the base node to the locking state or unlock the lock and
retry the operation, if the state flag is set to on. The transfer
from lock-free state to the locking state is performed after the
base node lock has been acquired by waiting for the non-zero
indicator to indicate that no modifying operations are active
in the base node and changing the state flag. A base node has
to be transferred from the lock-free state to the locking state
when e.g. an INSERT would result in more than one element in
the base node or when a low-contention join needs exclusive
access to the base node. To avoid that a CA tree gets stuck
in a state where all base nodes are converted to the lock-free
state, one can use random probing to occasionally transfer base
nodes from the lock-free state to the locking state.

VI. RELATED WORK

In the context of distributed DBMS, Joshi [21] presented the
idea of adapting locking in the ALG search tree data structure.
ALG trees are however very different from CA trees. In ALG
trees the tree structure itself does not adapt to contention, only
its locking strategy does. Furthermore, ALG trees do not collect
statistics about contention but use a specialized distributed lock
management system to detect contention and adapt the locking
strategies.

Various forms of adaptation to the level of contention
have previously been proposed for e.g. locks [24], diffracting
trees [13], [17] and combining [32]. The reactive diffracting
tree of Della-Libera and Shavit [13] shares some design ideas
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with CA trees. Diffracting trees distribute accessing threads
evenly over the leaf nodes of the tree and are used to implement
shared counters and load balancing. Like CA trees, reactive
diffracting trees estimate the contention and shrink and grow the
synchronization granularity according to this estimate. However,
their algorithm estimates contention by recording the times
to execute a function in contrast to our simple SC lock. The
self-tuning diffracting tree algorithm by Ha et al. does a local
estimation of the number of threads that are accessing the tree
from the number of threads that are waiting in a leaf [17]. Such
an estimate does not make sense in a binary search tree where
the threads are not distributed evenly. Also, our growing and
shrinking procedures are very different from the one proposed
by Ha et al. as well as that proposed by Della-Libera and Shavit.

A large number of concurrent ordered set data structures
for multicores have recently been proposed. We will not be
able to cover them all here but we will briefly describe the
data structures that we compare against in Section VII-A and
discuss a couple of other data structures that are interesting
in this context. Fraser [16] created the first lock-free ordered
set data structure based on the skiplist, which is similar to
ConcurrentSkipListMap (SkipList) in the Java standard library.
Since Fraser’s algorithm, several lock-free binary search trees
have been proposed (e.g. [7], [10], [15], [20], [26], [27]).
The relaxed balancing external lock-free tree by Brown et al.
(Chromatic) is one of the best performing lock-free search
trees [7]. Chromatic is based on the red-black tree algorithm
but has a parameter for the degree of imbalance that can be
tolerated. This parameter can be set to give a good trade-off
between contention created by balancing rotations and the
balance of the tree1. A number of well performing lock-based
trees have also been put forward recently [2], [6], [12], [14].
The tree of Bronson et al. (SnapTree) is a partially external
tree inspired by the relaxed AVL tree by Bougé et al. [5].
SnapTree uses a copy on write technique to get a fast atomic
snapshot capability [6]. This copy on write technique makes it
possible for the SnapTree to provide operations that atomically
read multiple elements, but the technique does not work for
operations that atomically modify multiple elements. The
SnapTree simplifies the DELETE operation by delaying removal
of nodes until the node is close to a leaf and uses an invisible
read technique from software transactional memory to get fast
read operations. The contention-friendly tree (CFTree) by Crain
et al. provides very good performance under high contention by
letting a separate thread traverse the tree to do balancing and
node removal, thus delaying these operations to a point where
other operations might have canceled out the imbalance [12].
The recently proposed LogOrdAVL tree by Drachsler et al. [14]
is fully internal in contrast to SnapTrees and CFTrees. Its tree
nodes do not only have a left and right pointer but also pointers
to next and previous nodes in the key order. This makes it
possible for searches in the LogOrdAVL tree to find the correct
node even if the search is lead astray by concurrent rotations.

Our CA trees can be said to be partially external trees
since the routing layer contains nodes that do not contain

1In our experimental evaluation, we use the value 6 for Chromatic’s degree
of imbalance parameter, since this value gives a good trade-off between balance
and contended performance [7].

any values. In contrast to SnapTrees and CFTrees however,
which are also partially external, the routing nodes in CA
trees are not a remainder of DELETE operations but are created
deliberately to reduce contention where needed. It is also a
large advantage in languages like C and C++ without automatic
memory management that that CA trees lock the whole part
of the tree that will be modified. This makes it possible to
directly deallocate nodes instead of using some form of delayed
deallocation. Some kind of special memory management is
still needed for the routing nodes but since they are deleted
much less frequently than ordinary nodes, CA trees are less
dependent on memory management.

The CB tree [2] is another recently proposed concurrent
binary search tree data structure that like splay trees auto-
matically reorganizes so that more frequently accessed keys
are expected to have shorter search paths. As CA trees are
agnostic to the sequential data structure component, they can
be used together with splay trees and can thus also get their
properties. In libraries that provide a CA tree implementation
the sequential data structure can even be a parameter which
allows to optimize the CA tree for the workload at hand. For
example, if the workload is update-heavy it might be better to
use Red-Black trees instead of AVL trees as sequential data
structure since Red-Black trees provide slightly cheaper update
operations at the cost of longer search paths than AVL trees.

The speculation-friendly tree by Crain et al. [11] utilizes
transactional regions as our hardware lock elision optimized CA
tree variant. To reduce expensive retries of transactional regions,
speculation-friendly trees divide tree operations into several
phases that are executed in different transactional regions.

The key difference between CA trees and recent work
on concurrent ordered sets is that CA trees optimize their
granularity of locking according to the workload at hand
which can often be difficult to predict during the design of an
application. Thus, CA trees are able to spend less memory and
time on synchronization when contention is low but are still
able to adapt to scale well on highly contended scenarios as
we will see in the next section.

VII. EVALUATION

We now evaluate the scalability of CA tree variants and the
effect of the optimizations we presented in Section V.

A. Comparison to Other Data Structures

First we will compare CA trees with some recently proposed
highly scalable algorithms for concurrent search trees. The code
for all algorithms was provided by their authors. For brevity
we refer to these algorithms by the acronyms we introduced
in Section VI. The CFTree, which is represented with dashed
gray lines in the graphs, is incompatible with the standard
interface for sets and maps since it has a separate maintenance
thread that has to be started and stopped when using the data
structure. However, we have chosen to include the CFTree in
our comparison anyway to show what kind of scalability one
can expect when one is willing to use a non-standard API and
dedicate one core for maintaining the tree’s balance. We refer
to our plain CA tree as CATree and to that with the sequence
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Fig. 6. Comparison to related concurrent data structures.

lock optimization as CATreeOpt. The version with the sequence
lock optimization and the optimization that converts highly
contented base nodes to a lock-free state is called CATreeLF. All
CA tree variants use an AVL tree as sequential data structure.

Benchmark: The benchmark measures throughput of
operations that a number of threads perform on the same
data structure. The data structure is initialized by inserting
keyRange

2 keys with keys randomly chosen from the interval
(0, keyRange]. The threads select the operations randomly so
that L% of them are LOOKUP, 100−L

2 % are INSERT, and the rest
are DELETE operations. All threads select the next key randomly
with an uniform distribution from the whole key range.

Setting: The machine we used has four Intel(R) Xeon(R)
CPU E5-4650 CPUs (2.70GHz), eight cores each (i.e. the
machine has a total of 32 physical cores, each with hyper-
threading, which makes a total of 64 logical cores), 128GB of
RAM and runs Debian Linux 3.10.17-amd64. We pin thread
counts up to 16 to one NUMA node (i.e., on 16 logical but only
8 physical cores), 32 threads to two NUMA nodes, and so on.
This way, we can see both single chip and NUMA performance

in the same graph (the borders are indicated with dashed gray
lines in the graphs). The Oracle Java 1.8.0_31 HotSpot(TM)
(started with parameters -Xmx8g, -Xms8g, -server and -d64)
was used to run the benchmarks. We ran one warm up run for
10 seconds and then three measurement runs for 10 seconds
on the same JVM for every data point. In graphs we show the
average throughput as well as error bars with the minimum
and maximum.

Results: Selected graphs from the benchmark are shown
in Fig. 6. From the graphs with the larger key range (2000000),
it can be seen that CATreeOpt and CATreeLF performs similar to
the best of the other data structures across all thread counts. The
lock free data structures’ (Chromatic and SkipList) performance
is behind the rest of the data structures with the larger key
range which can be explained with their longer search paths.
(Remember that Chromatic is an external tree where all keys are
stored in the leaves.) With key range 20000 and 99% reads, the
CATree scales poorly compared to the other CA tree variants,
which is not surprising since it needs to acquire a lock for
every read operation, while the other CA tree variants can do
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TABLE I
AVERAGE BASE NODE COUNTS (IN k) AT THE END OF RUNNING THE

BENCHMARK WITH 70% READS AND KEY RANGE 2000000.

threads 2 4 8 16 32 64
CATree 0.24 0.68 1.5 2.9 6.7 13.2

CATreeOpt 0.72 2.1 4.5 8.9 19.6 36.8
CATreeLF 0.72 2.0 4.5 8.8 19.6 36.6

reads without writing to shared memory at all. CFTree scales
best followed by the CA tree variants with key range 20000
and the more write heavy scenarios with 0% reads and 70%
reads. Remember however that CFTree is incompatible with
the normal interface for ordered sets and maps due to requiring
a separate maintenance thread.

Let us now focus on the graphs with key range 200 and 20
that show the strength of CATreeLF. It is clear that CATreeLF
copes best with the extremely high contention created with key
range 200 or 20 combined with 0% or 70% read operations. Not
surprisingly, inspection of CATreeLF after the benchmark runs
shows that CATreeLF has converted all its base nodes to the lock-
free state in these scenarios. Thus the operations are performed
by modifications or reads in the leaves of the tree without
acquiring any locks. The other data structures do not adapt to
such high contention and keep doing restructuring operations,
resulting in sub-optimal performance. In the less contended
scenarios (key range 200 and 20 and 99% reads), the CFTree
with its spinning balancing thread achieves best scalability,
followed by CATreeLF and the lock-free tree Chromatic.

Finally, we discuss the sequential performance of these
data structures, shown in the rightmost column of Fig. 6.
Overall, the CA trees give the best sequential performance even
though some of the other data structures match the CA trees’
performance in some scenarios. The CA trees’ performance
in the sequential case is essentially the same as that of their
sequential data structure (AVL tree) wrapped in a lock. As
discussed previously, Chromatic and SkipList suffer from their
longer search paths when the set size is large, and the CFtree
probably suffers from its delayed balancing by the dedicated
balancing thread in the sequential cases. The SnapTree has
excellent sequential performance for larger set sizes where its
synchronization overhead is a small part of the whole operation
but suffers from its synchronization overhead for small set sizes.

The average base node counts (in k) collected after running
the experiments with 70% reads and key range 2000000 are
shown in TABLE I. CATreeOpt and CATreeLF end up with
more base nodes than CATree since their substantially faster
read operation makes conflicts with writes more likely. The
base node counts also confirm that the CA trees adapt to
the contention level (an increased thread count results in an
increased base node count). Finally, we confirmed that the base
node counts stabilize around a specific value given a static
contention level by checking the base node counts after running
the experiments for longer periods of time, which means that
the base node count does not increase indefinitely.

B. Effect of HLE and RW Lock Optimizations

Finally, we evaluate the RW lock and HLE optimizations we
described in Section V. The benchmark is the same as before,
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Fig. 7. Throughput for HLE (CA-HLE) and RW lock (CA-DRMCS) optimiza-
tions compared with a plain CA tree (CA-TATAS) and sequential trees protected
by a TATAS lock (L-TATAS), RW lock (L-DRMCS), and an HLE lock (L-HLE).

but the data structures and the benchmark itself are implemented
in C. The implementation is in C because HLE locks are
currently not available for Java and because, as mentioned
in Section V, RW locks have some advantages compared to
sequence locks in an environment without automatic memory
management. The machine we used for these experiments is
also different because the previous machine does not support
HLE. Here we used a machine with an Intel(R) Xeon(R) CPU
E3-1230 v3 (3.30GHz), 4 cores with hyperthreading (8 logical
cores), and 16GB of RAM running Ubuntu 13.10. We compiled
the benchmark with GCC 4.8 using optimization level -O3.

Selected graphs from our experiments appear in Fig. 7. CA-
DRMCS is our RW lock optimization using the write-preference
RW lock with an MCS lock as mutex lock [8]. CA-HLE shows
our HLE optimization and CA-TATAS is the plain CA tree
algorithm using a Test-And-Test-And-Set (TATAS) lock for
the statistics lock. All CA tree variants use an AVL tree as
sequential data structure and a form of quiescent-state-based
reclamation for routing nodes in the tree [3], [25]. We compare
CA trees to a sequential AVL tree protected by an RW lock
(L-DRMCS), HLE lock (L-HLE) and a TATAS lock (L-TATAS).
As can be seen in the lower right corner of Fig. 7, the capacity
of the hardware transactional memory is clearly limited. With a
key range of 20 and 99% reads L-HLE starts to degregate after
only three threads, so it is clear that HLE alone is not sufficient
for good scalability. However with a key range of 20 and 99%
reads CA-DRMCS, CA-HLE and L-DRMCS perform reasonably
well. Going up to the graphs that show the key range 2000, it
is clear that CA trees together with HLE perform well. With
a key range of 2000, CA-DRMCS performs even worse than
CA-TATAS. This is likely because the contention for each base
node is too low to make concurrent readers at a base node
common. Increasing the key range or percentage of updates
even further makes the gaps between CA-HLE and CA-TATAS
smaller to a point that they are almost indistinguishable.

To conclude, we have shown that, on a single-chip system
with hardware transactional memory capabilities, combining
HLE with CA trees can give improved performance and that
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the overhead of the HLE lock seems to be small.
Finally, we mention that the code for all benchmarks as

well as many additional graphs appear at http://www.it.uu.se/
research/group/languages/software/ca_tree.

VIII. CONCLUDING REMARKS

In this paper, we have described a contention adapting
approach to concurrent data structure design. Our description
was restricted to binary search trees, but it should be easy to see
that it can easily be extended to all data structures that naturally
support a SPLIT and a JOIN operation. We have put forward
CA trees, a new concurrent data structure for ordered sets
and maps that is competitive with state-of-the-art algorithms
in various scenarios with a larger set sizes. Moreover, CA
trees outperform these algorithms in scenarios with smaller set
sizes and very high contention as well as in scenarios with no
contention at all. Their ability to perform well in a wide range
of scenarios shows the strength of the contention adaptive
approach to concurrent data structures.

In recent work, we have employed CA trees to increase the
scalability of the ordered_set part of the Erlang Term Storage
in-memory database [30]. CA trees are very well suited for
general purpose key-value stores since they naturally adapt to
a variety of scenarios and have efficient support for operations
that need to access multiple keys atomically. CA trees’ ability
to perform well under high contention on small set sizes and
their excellent uncontended performance also make them well
suited for use in the hash buckets of concurrent hash tables.
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