
More Scalable Ordered Set for ETS Using Adaptation

Konstantinos Sagonas Kjell Winblad
Department of Information Technology, Uppsala University, Sweden

firstname.lastname@it.uu.se

Abstract
The Erlang Term Storage (ETS) is a key component of the runtime
system and standard library of Erlang/OTP. In particular, on big
multicores, the performance of many applications that use ETS
as a shared key-value store heavily depends on the scalability of
ETS. In this work, we investigate an alternative implementation for
the ETS table type ordered_set based on a contention adapting
search tree. The new implementation performs many times better
than the current one in contended scenarios and scales better than
the ETS table types implemented using hashing and fine-grained
locking when several processor chips are used. We evaluate the new
implementation with a set of experiments that show its scalability
in relation to the current ETS implementation as well as its low
sequential overhead.

Categories and Subject Descriptors D.1.3 [Software]: Concur-
rent Programming—Parallel programming; D.3.2 [Programming
Languages]: Language Classifications—Concurrent, distributed and
parallel languages; Applicative (functional) languages

Keywords concurrent data structures; search trees; Erlang

1. Introduction
Erlang is a concurrent programming language which is often ad-
vertized as supporting “shared-nothing concurrency”. Processes
in Erlang are very lightweight, they are implemented by the vir-
tual machine instead of being mapped to operating system threads
and indeed share no memory by default. However, the main im-
plementation of the language, the Erlang/OTP system, comes with
mechanisms that allow processes to share memory that other pro-
cesses can read and update concurrently. Chief among them is the
Erlang Term Storage (ETS), a library which provides a key-value
store in-memory database that is implemented in C for efficiency.
In many Erlang applications, ETS is heavily used and is a critical
component of their implementation.

To benefit from multicores, the Erlang/OTP virtual machine
has been adapted to use multiple schedulers which allow Erlang
processes to run in parallel. As is well-known however, regardless of
how many processes are runnable at any point in an application, the
speedup that one can gain from the available hardware parallelism
is limited by the sequential parts of the program and the bottlenecks
that might exist in the runtime system.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Erlang ’14, September 05, 2014, Gothenburg, Sweden.
Copyright c© 2014 ACM 978-1-4503-3038-1/14/09. . . $15.00.
http://dx.doi.org/10.1145/2633448.2633455

Over recent years, the ETS implementation has gradually im-
proved in scalability and performance [12]. For example, some ETS
tables are implemented using fine-grained locking and nowadays the
user can set various concurrency options [12]. However, as we will
soon show in this paper, ETS tables of type ordered_set are still
a scalability bottleneck when there are concurrent write operations.
This is not suprising given that their implementation is based on a
data structure protected by a single readers-writer lock.

To ameliorate the situation, in this paper we propose an alterna-
tive implementation for ETS tables of type ordered_set that, with
only a small sequential overhead, allows update operations to take
place in parallel, thereby improving the scalability of the system.
Our alternative ordered set implementation is a novel concurrent
data structure called contention adapting tree (CA tree for short).

Overview The next section contains a description of the ETS
implementation as well as an evaluation of its current scalability. It
serves both as background material and presents the motivation for
this work. A high-level description of CA trees is given in Section 3.
How to properly integrate CA trees into the ETS implementation is
described in Section 4. The performance and scalability of CA trees
is measured in Section 5 by comparing them to those of the current
ETS implementation. This paper ends by related (Section 6) and
future work (Section 7) and some concluding remarks (Section 8).

2. Erlang Term Storage
In this section, we will briefly present aspects of ETS that are
necessary to understand this paper. For more information about
ETS, the evolution of its implementation, and its performance
and scalability across Erlang/OTP releases refer to a paper [12]
presenting these subjects in detail.

2.1 Table Types and Operations
ETS tables are key-value stores: they store Erlang tuples where one
of the positions in the tuple serves as the lookup key. ETS tables
come in many flavors. When creating an ETS table, one can specify
several options. One of them is public, which specifies that all
Erlang processes can access this table to read and update its contents
concurrently. In this paper, we focus on this kind of ETS tables.
Another set of options specifies the type of the table, which can be
either set, bag, duplicate_bag or ordered_set. In tables of type
set and ordered_set all keys are unique. The difference between
them is that tables of type ordered_set provide traversal in key
order, while those of type set only provide unordered traversal. The
functions for traversal are first/1, last/1, next/2 and prev/2.
Functions first/1 and last/1 return the first and last key of a
table respectively. The next/2 function is given a table and a key
and returns the key of the next element in the table’s order (the
key order in tables of type ordered_set). The prev/2 function
works symmetrically. To perform safe traversal of a public table
without an order, programs have to first call the ETS function
safe_fixtable/1. This will fix the internal structure of the table

to avoid re-orderings of the elements internally. Unfortunately, this
can also cause performance degradation if the table changes size
while it is fixated.

For completeness, we mention that ETS tables of type bag allow
the presence of several tuples with the same key, while those of
type duplicate_bag even allow duplicated tuples. Besides the
operations mentioned above, the ETS API supports a large number
of other operations. For example, it includes high-level functions
like foldl/3 and foldr/3 and functions to atomically insert a
bunch of elements or atomically update all elements in a list.

2.2 Implementation Aspects
Currently, tables of type set, bag and duplicate_bag are imple-
mented using linear hashing [15] and tables of type ordered_set
are implemented with AVL trees [1].

By default, every public table is protected by a single readers-
writer lock. When creating such a shared table one can also
specify the performance tuning options read_concurrency and
write_concurrency. The option read_concurrency enables an
optimization on the table lock for many concurrent read operations.
A little bit oversimplified, the read optimized table lock has one
memory area for every scheduler in the Erlang virtual machine.
These memory areas are called reader groups. Every scheduler is
assigned to one of these reader groups and uses it to synchronize
with write operations. On multicores, this makes it possible for read
operations to access the table without any memory contention. When
write operations enter the picture, the reader groups can cause some
overhead since writers have to read all reader groups. The option
write_concurrency is supposed to optimize the table for many
concurrent write operations. When enabling write_concurrency
on a hash-based table, fine-grained (i.e. bucket-level) locking is en-
abled for the data structure. The hash-based tables can thus scale well
in the presence of concurrent write operations. The ordered_set ta-
ble type is however unaffected by the write_concurrency option.
Currently, the ETS documentation does not mention this fact.

2.3 Current Scalability
Next, we will examine the scalability of the current implementation
of ETS by varying the table options and operations used. Before
describing the benchmark and the hardware setting we will employ,
let us mention that the implementation of all tables based on
hashing is shared, i.e. they use the same code, and consequently
their performance and scalability characteristics are very similar.
Therefore, henceforth we will use the set type as a representative
for all hash-based table types, and we will only include tables of
type set and ordered_set in our benchmarking.

Benchmark Description In this section and in Section 5 we will
employ the ets_bench benchmark from the BenchErl benchmark
suite [5] to measure the scalability of ETS. ets_bench is a config-
urable benchmark designed to measure the scalability of different
ETS table configurations. The benchmark measures three phases,
one for the insert operation, one for the delete operation, and
one for mixed operations (a mix of inserts, deletes and lookups).
The insert phase performs I insert operations with keys randomly
chosen from the range R = [1,K]. The mixed phase is started with
the keys that were inserted during the insert phase and executes M
operations with keys randomly chosen from R, where the operations
are selected randomly so that L% of the operations are lookups and
(100− L)% are updates. The update operations are selected so that
half of them are insert and the other half are delete operations;
i.e. so that the table size stays roughly constant during this phase.
Finally, the delete phase starts with the keys that exist in the table
after the mixed phase and executes I delete operations with keys
randomly chosen from R. The key range that is used in the bench-
mark is [1, 221], the insert phase performs 220 operations and the

mixed phase performs 222 operations. The operations performed by
a phase are distributed to the worker processes that are set up to run
the benchmark so that all processes perform roughly the same num-
ber of operations. One worker process is started for every scheduler
in the Erlang runtime system. The scalability of the system is thus
measured by varying the number of schedulers that the Erlang/OTP
system is started with. To ensure reliable results we measure every
configuration three times and show the arithmetic mean of these
measurements in the graphs. An error bar showing the minimum and
maximum measurements is also displayed when the measurements
have enough difference to make the error bar visible. We mention in
passing that our previous paper on the scalability of ETS [12] also
used ets_bench, where more information about the benchmark can
be found.

Benchmark Setting The machine we use has four Intel(R)
Xeon(R) CPU E5-4650 CPUs (2.70GHz), eight cores each (i.e.
the machine has a total of 32 physical cores, each with hyperthread-
ing, which makes a total of 64 logical cores). The machine has
128GB of RAM and is running Debian Linux 3.10.17-amd64.

In all benchmark runs we pin the scheduler threads of the VM to
hardware threads using the +sbt nnts option of erl. This option
will make the Erlang runtime system first occupy all physical
cores on one NUMA node (processor chip), then all logical cores
(hyperthreads) on the same NUMA node, then the next NUMA
node is filled in the same way, and so on. This way the first sixteen
scheduler counts in all graphs show the scalability on a single
processor chip. All the code that we are benchmarking is based
on Erlang/OTP release 17.0.

Benchmark Results In the graphs of this section, we use tables
of type set as representative of the hash-based ETS tables in
order to compare them with tables of type ordered_set which
is what we focus on in this paper. We also enable all combina-
tions of concurrency options that are available for tables of type
set and ordered_set. In particular, an r in a graph’s label indi-
cates that read_concurrency is activated and a w indicates that
write_concurrency is activated. Activating both is indicated with
r,w. In all graphs we measure scalability by throughput: the number
of operations per microsecond that get executed as the number of
VM schedulers (hardware threads) increases.

The first set of benchmarks measures the scalability of the basic
ETS operations (insert, delete and lookup) in isolation. Figure 1
shows the results. Various conclusions can be drown immediately.

For the update operations (Figures 1a and 1b) the scalability is
good only if one activates the write_concurrency option, which
currently is effective only on tables of type set. With this option
activated, the throughput of update operations increases when adding
cores on a single chip, then it increases but at a slower pace when
also adding the hyperthreads on the same chip, and starts dropping
once schedulers are on different NUMA nodes.

The lookup operation shows a different picture. A readers-writer
lock allows many concurrent readers so there is increased throughput
in all cases as long as we stay on the same NUMA node. Even
on more than one NUMA node, the scalability is pretty good on
both set and ordered_set when the read_concurrency option
is activated.

To summarize Figure 1, ETS tables of type ordered_set have
very bad scalability in update-only scenarios, but perform quite
well when the operations are just lookups. Given that in many
applications we can expect that the lookups vastly outnumber the
updates, one may argue that the scalability of the ordered_set
table type is typically not so bad in practice if one is careful to
enable the read_concurrency option. Unfortunately, as we will
soon show, even a small amount of update operations can have
devastating effects to the scalability of ordered_set ETS tables.

0 10 20 30 40 50 60 70
Number of Threads

0

1

2

3

4

5

6

7

8

9

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
set,r
set,w
set,r,w
ordset
ordset,r

(a) insert

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

12

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
set,r
set,w
set,r,w
ordset
ordset,r

(b) delete

0 10 20 30 40 50 60 70
Number of Threads

0

5

10

15

20

25

30

35

40

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
set,r
set,w
set,r,w
ordset
ordset,r

(c) lookup

Figure 1: Scalability of ETS table configurations on insert, delete
and lookup operations.

Figure 2 shows results from running ets_bench with configu-
rations where the percentage of lookups varies from 50% to 99%.
As can be clearly seen in all graphs, the scalability of ordered_set
is pretty bad even when the amount of updates is very low. Only
tables of type set with write_concurrency enabled show good
scalability in scenarios with a mix of operations. Finally, in the
current ETS implementation, in scenarios with a mix of operations,
one cannot expect increased scalability once schedulers are not on
the same NUMA node.

But one thing is clear. Something needs to be done about tables
of type ordered_set in the presence of updates. In the next sections
we will describe an alternative data structure for tables of this

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

12

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
set,r
set,w
set,r,w
ordset
ordset,r

(a) 50% Updates, 50% Lookups

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

12

14

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
set,r
set,w
set,r,w
ordset
ordset,r

(b) 20% Updates, 80% Lookups

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

12

14

16

18

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
set,r
set,w
set,r,w
ordset
ordset,r

(c) 1% Updates, 99% Lookups

Figure 2: Scalability of ETS table configurations using a mix of
update and lookup operations.

type and we will see whether and how much it can improve the
scalability of ETS, both compared to the current implementation of
ordered_set and in comparison to tables of type set.

3. A High-Level View of CA Trees
This section provides a bird’s eye view of contention adapting search
trees or CA trees for short. A CA tree implements the abstract data
type ordered set and supports normal set operations such as insert,
delete and lookup as well as efficient ordered traversal. Pseudocode
for the implementation of CA trees, their properties, and more
information about them can be found in a companion technical

report [21]. Here, we only briefly describe the components of CA
trees and give a rough idea about how to assemble them into an
efficient implementation. The two main components of CA trees are
mutual exclusion locks, which collect statistics about how contended
each lock is, and a sequential ordered set data structure that supports
split and join operations.

3.1 Components
For a data structure to adapt according to how contended it is, one
needs to record the contention of its accesses. Adaptation can occur
when enough contention has been detected to justify an adaptation.
Likewise, one needs to collect information about lack of contention
to be able to adjust accordingly. A natural place to collect such
statistics for a data structure containing mutual exclusion locks is
in the locks themselves. A straightforward implementation is to
increment a counter when a thread needs to wait for a lock and
decrement the counter when a thread aquires the lock without
waiting. With this statistics available, the data structure can be
adjusted when the statistics counter reaches certain thresholds. We
define a statistics collecting lock as a lock object that provides the
usual operations lock, unlock and try_lock as well as a statistics
variable that gives an indication of the contention level of the lock.

The second component that CA trees use is a sequential ordered
set data structure. Essentially, any such data structure could be
used. However, to create an efficient CA tree implementation it
is important to consider the efficiency of its operations since the
efficiency of a CA tree will in turn depend on these operations. A
CA tree adapts to contention by splitting the sequential ordered set
data structure in two. The split operation creates two new data
structures where all keys in one of the resulting parts are smaller
than the keys in the other part. To adapt fast to contention the
sequential data structure needs to have efficient support for the
split operation. To adapt to lack of contention we also need an
efficient join operation. This operation takes two sequential data
structures where all keys in one of them are strictly smaller than
the keys in the other and creates a new data structure containing the
keys of both.

3.2 Assembling the Components
Given a statistics collecting lock and a sequential ordered set data
structure one can assemble a CA tree. A CA tree consists of routing
nodes and base nodes. Routing nodes contain a routing key, an
ordinary mutex lock, a valid flag, one pointer for a left branch and
one pointer for a right branch. All keys in the left branch are smaller
than the routing key and all keys in the right branch are greater or
equal to the routing key. A branch can either be another routing
node or a base node. The lock and the valid flag in a routing node
are only needed when adapting to low contention by joining trees,
an operation which is expected to happen only infrequently. A base
node contains a statistics collecting lock that needs to be acquired
to access the rest of the data in the base node. Additionally, the base
node contains a sequential ordered set data structure and a valid flag.

Figure 3 depicts the structure of a CA tree. The oval shapes
are routing notes; the rectangular shapes are base nodes, and the
triangular shapes are sequential ordered set data structures. Nodes
marked with a valid symbol (a green curve in the figure) are valid,
while the node marked with an invalid symbol is no longer in the
tree. The search for a key in the tree happens as in a normal binary
search tree. To access the content of a base node the statistics lock
in the base node needs to be acquired. After taking the statistics
lock the valid flag needs to be checked. If this flag is set to invalid,
the base node is no longer in the tree and the operation needs to be
retried from the root of the tree.

Adapting to high contention works by splitting a base node
into two base nodes that are linked together with a new routing

...

87

42

Figure 3: The structure of a contention adapting search tree.

node. Before unlocking the original base node, the node needs to be
marked invalid so that threads that have been waiting for the lock
during the split will see that they need to retry the operation.

Adapting to low contention is slightly more complicated than
adapting to high contention. The low contention adaptation works
by joining two neighboring base nodes in the tree. One also has to
remove one routing node from the tree. To do this without risking to
lose part of the tree, we need to lock the parent of the base node that
will be deleted as well as the grandparent (if the grandparent is not
the root of the tree). Similarly to the case when adaptation requires
a split, both joined base nodes need to be marked invalid before they
are unlocked so that waiting threads will retry the operation.

4. Integrating CA Trees into ETS
Two variants of the CA tree have been implemented and integrated
into ETS as two new table types for testing purposes. One of
these variants uses the Treap data structure [3] as the sequential
ordered set component and the other one uses an AVL tree [1]. The
implementation of the latter is based on the AVL tree code currently
used by Erlang/OTP for ordered_set.

The CA tree integration is currently a prototype in the sense that
it does not yet support the full interface of ETS. The operations
currently supported are insert, delete, and lookup. However,
extending the implementations to support the full ETS interface is
quite easy. The operations that operate on a single key can just be
forwarded to the sequential data structure. In the case of the CA tree
implementation which is based on the AVL tree, the code for the
ordered_set implementation can be reused as is.

Operations that atomically operate on several keys can be im-
plemented as they are currently implemented in the set table type
when fine-grained locking (i.e. write_concurrency) is activated.
With fine-grained locking enabled, the operations first acquire the
table’s readers-writer lock in read mode and then the fine-grained
lock for the hash table bucket that they need. Operations that atomi-
cally operate on several keys take the table lock in write mode and
will thus lock out all other operations from the table.

An interesting operation is the one that returns the size of an ETS
table. This is what ets:info(Tab,size) does. Also, the size of a
table is part of the return value of ets:info/1. The operation of
returning the size of an ETS table can be implemented by using one
global counter for each table which is atomically incremented and
decremented when elements are added and removed. Actually, this
is how returning the size of an ETS table is currently implemented
in Erlang/OTP 17.0. When calls to ets:info(Tab,size) are
frequent, this implementation is very good since retrieving the size

of an ETS table amounts to just a load instruction. However, a global
counter is a scalability bottleneck. An alternative implementation
for the CA tree would be to keep a counter in every base node.
To return the size of an ETS table, the operation would then have
to acquire the table lock and sum the size counters of all base
nodes. The cost for computing the size would then depend on the
contention level, but the scalability bottleneck of using a global
counter would be avoided, so this implementation is probably
better when ets:info(Tab,size) is expected to be called only
occasionally.

Base nodes and routing nodes can be removed from the tree by
one thread while other threads still have references to them. Thus,
these nodes cannot be reclaimed with an ordinary free call. There
exist several ways to deallocate these nodes in a safe way [9, 11, 17].
Our current implementation deals with the reclamation of base and
routing nodes by putting them in a free list array located in the
table data structure. Once the free list gets full the table is write-
locked and unlocked so that no threads can reference elements in
the free list. At this point the free list can be emptied and all its
elements can be deallocated. This is a form of quiescent-state-based
reclamation [4, 16]. The table lock is only acquired when the free list
is full and deletions of base and routing nodes happens infrequently,
so the cost of acquiring the table lock is amortized over many
operations. If a CA tree implementation is going to be integrated
into the Erlang/OTP distribution, a better way to deal with memory
reclamation would be to use the memory reclamation system for
lock-free data structures that is already part of the Erlang/OTP code
base.

5. Performance Evaluation
This section contains performance and scalability evaluations
for the new table types (AVL-based and Treap-based CA trees).
We compare the new table types with the current implementa-
tions of ordered_set and set. Tables of type ordered_set
have read_concurrency activated and those of type set have
both write_concurrency and read_concurrency activated. As
we have shown in Section 2.3, it does not matter much which
concurrency options are activated for ordered_set when there
are update operations, and the difference between activating
both read_concurrency and write_concurrency versus only
write_concurrency is not large for the set type.

5.1 Scalability w.r.t. Operations and Contention Levels
Figure 4 shows the performance of the table types with varying dis-
tributions of operations and varying contention levels. The measure-
ments are collected by ets_bench that we described in Section 2.3.
The benchmark settings are also the same as in Section 2.3. Both the
insert and the delete phase thus do 221 operations each. The lookup
and mixed scenarios operate on a set with roughly 221 elements.

We start by analyzing the insert and delete phases (Figures 4a
and 4b). In both these scenarios, the data structures with fine grained
locking (set, AVL-CA tree and Treap-CA tree) seem to scale
relatively well when just one processor chip is used (up to sixteen
threads). The scalability deteriorates when using more than one
NUMA node for all data structures. However, the performance
seems to degradate most for set. Memory transfer is much more
expensive between NUMA nodes than within a single processor chip
which explains this decrease in performance. As we have discussed
in our previous paper about the scalability of ETS [12], the set table
type has a few contended hot spots. For example, only one thread
can change the size of a table and there are atomically modified
counters for the number of active buckets as well as the size of the
table. The memory management functions used by ETS also contain
a contended hot spot. The size of the memory consumed by the
tables is stored in an integer modified by atomic instructions. This

0 10 20 30 40 50 60 70
Number of Threads

0

1

2

3

4

5

6

7

8

9

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(a) insert

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

12

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(b) delete

0 10 20 30 40 50 60 70
Number of Threads

0

5

10

15

20

25

30

35

40

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(c) lookup

Figure 4: Scalability of the CA tree variants compared to
ordered_set and set with concurrency options activated.

counter is modified every time elements are added to or deleted
from the table. Since the new table types also use the same ETS
memory management code their performance is also effected by this
component. However, the new table types have less hot spots than
the set and can thus perform better when several NUMA nodes are
used.

In the lookup-only case (Figure 4c) just protecting a table
with a frequent read optimized readers-writer lock scales best.
It is surprising that the set with both read_concurrency and
write_concurrency scales so poorly in the read-only case. We
suspect that set has some problems with false sharing or something

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(a) 100% Updates

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(b) 67% Updates, 33% Lookups

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

12

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(c) 50% Updates, 50% Lookups

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

12

14

16

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(d) 20% Updates, 80% Lookups

0 10 20 30 40 50 60 70
Number of Threads

0

5

10

15

20

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(e) 10% Updates, 90% Lookups

0 10 20 30 40 50 60 70
Number of Threads

0

5

10

15

20

25

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(f) 1% Updates, 99% Lookups

Figure 5: Scalability of the CA tree variants in various scenarios compared to ordered_set and set with concurrency options activated.

similar, but it remains as future work to find the exact root of this
problem. It is not surprising that the CA tree variants scale worse
than ordered_set in the read-only case since the CA trees also
need to adapt to the contention. However, the CA trees still perform
well and even beat the set implementation with fine-grained locking
when several NUMA nodes are used.

In mixed operation scenarios (Figure 5) the CA trees outperform
all other table types when several NUMA nodes are used. It is not
surprising that the CA trees perform better than the ordered_set
protected by a single readers-writer lock. On the other hand, it is less
obvious why they scale better than set with fine-grained locking.
One reason could be the set’s contended hot spots discussed earlier.
Another point worth noting about the fine-grained locking in set
is that its implementation currently contains a limited number of
bucket locks (64 in Erlang/OTP 17.0) while the CA trees can adapt
the number of locks that are used to the current contention level.
A CA tree will also adapt to situations where the contention is
distributed unevenly over the key range and create the fine-grained
locks where needed.

5.2 Scalability with Different Set Sizes
Let us now analyze a benchmark that keeps the distribution of
operations fixed (80% lookup operations and the rest updates) and
varies the set size. We use key ranges of sizes between 23 to 227;
cf. Figure 6. The insert phase that always happens before the mixed
phase performs as many operations as half the size of the key range.
We measure the time it takes for the worker processes to perform
222 operations as in the previous benchmarks.

The number of locks in a CA tree is limited by the key range size.
Therefore, it is not surprising that the CA trees seem to scale better
with larger key range sizes. However, the CA trees scale surprisingly
well even with a key range of eight (Figure 6a). With such a small
key range, the locks will be contended and the performance will to
a large degree depend on the lock implementation. In the current
implementation of CA trees we use the mutex lock from the pthreads
library. This is a sleeping lock as the locks used for the standard
ETS table types and is thus friendly to other threads running in the

system. A more aggressive lock implementation would probably
improve the scalability of the CA trees when the key range is small.

The scalability of ordered_set improves by a small amount
with larger key ranges. This is probably because the overhead of the
lock becomes less visible when the operations take longer time. The
overhead of the memory management hot spots in the CA trees are
also more hidden when the operations take longer time. However,
set’s scalability problem when more than one NUMA node is used,
seems to persist even with the larger key ranges.

5.3 Sequential Performance
In Figure 7, the sequential performance measurements from the
benchmark described in the previous section are displayed. The
sequential performance difference between the AVL-CA tree and
ordered_set is small for all set sizes. However, the relative differ-
ence between those two implementations is larger for small set sizes.
Both ordered_set and the AVL-CA tree use the same AVL tree
implementation, so the overhead of the AVL-CA tree just consists
of the infrastructure needed to do the adaptation. One extra node (a
base node) has to be traversed in the AVL-CA tree. There is also
some overhead in maintaining a statistics counter and checking if
adaption shall be made.

Another overhead that would be removed in a more mature im-
plementation of the CA trees is the overhead induced by having
two levels of table locks. The CA trees have been developed in a
stand-alone data structure library to make testing and experimenta-
tion easier. The table lock in this library is used for safe memory
reclamation as described in Section 4. In the current prototypical
implementation both the table lock from ETS and from the stand-
alone library are read-locked for normal operations. This makes
integration into ETS very simple but also slightly inefficient since
one of the table locks is redundant. The table locks in the stand-alone
library use the same type of reader groups as the ones used in ETS.
An integer variable in the thread’s reader group is incremented with
an atomic instruction during a read lock call and decremented in a
read unlock call. These atomic instructions are relatively expensive
since they also include a full memory barrier.

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

12

14

16

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(a) Key Range Size 23 (80% Lookups)

0 10 20 30 40 50 60 70
Number of Threads

0

5

10

15

20

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(b) Key Range Size 26 (80% Lookups)

0 10 20 30 40 50 60 70
Number of Threads

0

5

10

15

20

25

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(c) Key Range Size 29 (80% Lookups)

0 10 20 30 40 50 60 70
Number of Threads

0

5

10

15

20

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(d) Key Range Size 212 (80% Lookups)

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

12

14

16

18

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(e) Key Range Size 215 (80% Lookups)

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

12

14

16

18

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(f) Key Range Size 218 (80% Lookups)

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

12

14

16

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(g) Key Range Size 221 (80% Lookups)

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

12

14

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(h) Key Range Size 224 (80% Lookups)

0 10 20 30 40 50 60 70
Number of Threads

0

2

4

6

8

10

Op
er

at
io

ns
 /

M
ic

ro
se

co
nd

set
ordset
AVL-CA tree
Treap-CA tree

(i) Key Range Size 227 (80% Lookups)

Figure 6: Scalability of the CA tree variants with varying set sizes compared to ordered_set and set with concurrency options activated
using 80% lookups and 20% updates.

23 26 29 212 215 218 221 224 227

Set Size

0

2

4

6

8

10

12

14

Ti
m

e
(S

ec
on

ds
)

set
ordset
AVL-CA tree
Treap-CA tree

Figure 7: Sequential performance using 80% lookups and 20%
updates and varying set sizes.

6. Related Work
The literature contains a vast number of concurrent ordered set data
structures, e.g. [2, 6, 8, 9, 18]. It is beyond the scope of this paper to
discuss all of them in detail, but we want to note that none of them
is likely to have as low sequential overhead as the CA tree.

Some work specific to ETS has been published before. In partic-
ular, our own study about the scalability of ETS and its evolution
across Erlang/OTP releases [12] is a predecessor to this paper. There
we gave a detailed description of the ETS implementation and dis-
cussed some of its scalability problems.

Nyblom has suggested the addition of software transactional
memory (STM) to ETS [19]. However, that STM implementation is
concerned only with hash-based tables and not with ordered_set.

Fritchie has published a study about the ETS table implementa-
tions and their performance where he also compares the then current
implementations of ETS with B-trees and Judy arrays [10]. However,
Fritchie’s study was concerned only with sequential performance
and did not contain any discussion about concurrent execution.

In a recent work about more scalable libraries for queue dele-
gation locking we experimented with the use of alternative lock-
ing libraries [13] for ETS. In particular, we compared the current
readers-writer lock used as table lock in ETS with the DR-MCS [7]
and the MR-QD lock [14]. We showed that DR-MCS and MR-QD

locks provide better performance for ordered_set when there are
concurrent write operations. However, since readers-writer locks
do not allow parallel write operations they can not give as good
scalability as that provided by CA trees.

7. Discussion and Future Work
First of all, some work is still needed to make contention adapting
trees ready for inclusion in the ETS code of the Erlang/OTP
distribution. In particular, support for the full ETS API needs to
be implemented, but, as explained in Section 4, we expect that this
will be a relatively easy task.

If it is decided to integrate CA trees into ETS, one also has to
decide in what way that should be done. One alternative is to replace
the ordered_set implementation with the AVL-CA tree. This way
the read-only scenarios will get slightly worse performance and
scalability than presently. Another alternative would be to add an
additional table type. The disadvantage of this approach is that it will
complicate the ETS programming interface and add to the decision
making process and possible experimentation and measurements
that programmers have to do. Finally, a non intrusive option would
be to only use the AVL-CA tree when write_concurrency is
activated on an ordered_set table. This way the read-only cases
can still get the current good performance and scalability while the
scalability problems that ordered_set currently has in scenarios
that contain write operations can be avoided.

The CA tree itself is an interesting concurrent set data structure
since it is very simple to implement, has low sequential overhead
and can adapt to contention. We intend to work more on contention
adapting concurrent data structures; in particular to prove properties
of CA trees and discuss their algorithms in detail. We will also
try to improve the performance of CA trees by extending its basic
implementation, for example by using readers-writer locks in the
base nodes and by using hardware lock elision [20].

8. Concluding Remarks
We have proposed a new ordered_set implementation for ETS that
can handle concurrent write operations. Our experiments show that
the new implementation not only makes ordered_set more perfor-
mant when there are concurrent write operations but also makes it
scale well on big multicores in many scenarios. Furthermore, the new
ordered_set implementation even scales better than ETS tables
based on hashing with fine grained locking when several NUMA
nodes are used. It can therefore help improve the performance and
scalability of a wide range of Erlang applications.

Acknowledgments
This work has been supported in part by the European Union grant
IST-2011-287510 “RELEASE: A High-Level Paradigm for Reli-
able Large-scale Server Software” and by UPMARC (the Uppsala
Programming for Multicore Architectures Research Center).

References
[1] G. Adelson-Velskii and E. M. Landis. An algorithm for the organization

of information. In Proceedings of the USSR Academy of Sciences,
volume 146, pages 263–266, 1962. In Russian.

[2] Y. Afek, H. Kaplan, B. Korenfeld, A. Morrison, and R. E. Tar-
jan. CBTree: A practical concurrent self-adjusting search tree. In
International Symposium on Distributed Computing, pages 1–15.
Springer, 2012. URL http://link.springer.com/chapter/10.
1007/978-3-642-33651-5_1.

[3] C. R. Aragon and R. G. Seidel. Randomized search trees. In Pro-
ceedings of the 30th Annual Symposium on Foundations of Computer
Science, pages 540–545, Oct. 1989. . URL http://dx.doi.org/10.
1109/SFCS.1989.63531.

[4] A. Arcangeli, M. Cao, P. E. McKenney, and D. Sarma. Us-
ing read-copy-update techniques for system V IPC in the Linux
2.5 kernel. In USENIX Annual Technical Conference, FREENIX
Track, pages 297–309. USENIX, 2003. ISBN 1-931971-11-
0. URL https://www.usenix.org/legacy/events/usenix03/
tech/freenix03/full_papers/arcangeli/arcangeli.pdf.

[5] S. Aronis, N. Papaspyrou, K. Roukounaki, K. Sagonas, Y. Tsiouris,
and I. E. Venetis. A scalability benchmark suite for Erlang/OTP. In
Proceedings of the Eleventh ACM SIGPLAN Workshop on Erlang,
pages 33–42. ACM, 2012. ISBN 978-1-4503-1575-3. URL http:
//doi.acm.org/10.1145/2364489.2364495.

[6] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical
concurrent binary search tree. In Proceedings of the 15th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
pages 257–268. ACM, 2010. URL http://dx.doi.org/10.1145/
1693453.1693488.

[7] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit.
NUMA-aware reader-writer locks. In Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
pages 157–166, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
1922-5. URL http://doi.acm.org/10.1145/2442516.2442532.

[8] T. Crain, V. Gramoli, and M. Raynal. A contention-friendly binary
search tree. In Euro-Par 2013 Parallel Processing - 9th International
Conference, volume 8097 of LNCS, pages 229–240. Springer, 2013.
URL http://dx.doi.org/10.1007/978-3-642-40047-6_25.

[9] K. Fraser. Practical lock-freedom. PhD thesis, University of Cambridge
Computer Laboratory, 2004.

[10] S. L. Fritchie. A study of Erlang ETS table implementations and
performance. In Proceedings of the 2003 ACM SIGPLAN Workshop
on Erlang, pages 43–55. ACM, 2003. URL http://dx.doi.org/10.
1145/940880.940887.

[11] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Performance
of memory reclamation for lockless synchronization. Journal of
Parallel and Distributed Computing, 67(12):1270–1285, 2007. ISSN
0743-7315. URL http://dx.doi.org/10.1016/j.jpdc.2007.04.
010.

[12] D. Klaftenegger, K. Sagonas, and K. Winblad. On the scalability of
the Erlang term storage. In Proceedings of the Twelfth ACM SIGPLAN
Workshop on Erlang, pages 15–26, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2385-7. URL http://doi.acm.org/10.1145/
2505305.2505308.

[13] D. Klaftenegger, K. Sagonas, and K. Winblad. Delegation locking
libraries for improved performance of multithreaded programs. In Euro-
Par 2014, Proceedings of the 20th International Conference, volume
8632 of LNCS. Springer, 2014. Preprint available from http://www.
it.uu.se/research/group/languages/software/qd_lock_lib.

[14] D. Klaftenegger, K. Sagonas, and K. Winblad. Queue delegation
locking, 2014. Available from http://www.it.uu.se/research/
group/languages/software/qd_lock_lib.

[15] P.-Å. Larson. Linear hashing with partial expansions. In Proceedings
of the Sixth International Conference on Very Large Data Bases, pages
224–232. VLDB Endowment, 1980.

[16] P. E. McKenney and J. D. Slingwine. Read-copy update: Using
execution history to solve concurrency problems. In Parallel and
Distributed Computing and Systems, pages 509–518, 1998.

[17] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Transactions on Parallel and Distributed Systems, 15
(6):491–504, 2004. URL http://dx.doi.org/10.1109/TPDS.2004.
8.

[18] A. Natarajan and N. Mittal. Fast concurrent lock-free binary search
trees. In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 317–328,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2656-8. URL
http://doi.acm.org/10.1145/2555243.2555256.

[19] P. Nyblom. Erlang ETS tables and software transactional memory: How
transactions make ETS tables more like ordinary actors. In Proceedings
of the Tenth ACM SIGPLAN Workshop on Erlang, pages 2–13. ACM,
2011. URL http://dx.doi.org/10.1145/2034654.2034658.

http://link.springer.com/chapter/10.1007/978-3-642-33651-5_1
http://link.springer.com/chapter/10.1007/978-3-642-33651-5_1
http://dx.doi.org/10.1109/SFCS.1989.63531
http://dx.doi.org/10.1109/SFCS.1989.63531
https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcangeli.pdf
https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcangeli.pdf
http://doi.acm.org/10.1145/2364489.2364495
http://doi.acm.org/10.1145/2364489.2364495
http://dx.doi.org/10.1145/1693453.1693488
http://dx.doi.org/10.1145/1693453.1693488
http://doi.acm.org/10.1145/2442516.2442532
http://dx.doi.org/10.1007/978-3-642-40047-6_25
http://dx.doi.org/10.1145/940880.940887
http://dx.doi.org/10.1145/940880.940887
http://dx.doi.org/10.1016/j.jpdc.2007.04.010
http://dx.doi.org/10.1016/j.jpdc.2007.04.010
http://doi.acm.org/10.1145/2505305.2505308
http://doi.acm.org/10.1145/2505305.2505308
http://www.it.uu.se/research/group/languages/software/qd_lock_lib
http://www.it.uu.se/research/group/languages/software/qd_lock_lib
http://www.it.uu.se/research/group/languages/software/qd_lock_lib
http://www.it.uu.se/research/group/languages/software/qd_lock_lib
http://dx.doi.org/10.1109/TPDS.2004.8
http://dx.doi.org/10.1109/TPDS.2004.8
http://doi.acm.org/10.1145/2555243.2555256
http://dx.doi.org/10.1145/2034654.2034658

[20] R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling highly
concurrent multithreaded execution. In Proceedings of the 34th Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO 34,
pages 294–305, Washington, DC, USA, 2001. IEEE Computer Society.
ISBN 0-7695-1369-7. URL http://dl.acm.org/citation.cfm?
id=563998.564036.

[21] K. Sagonas and K. Winblad. Technical report: Contention adapt-
ing trees, 2014. Available from http://www.it.uu.se/research/
group/languages/software/ca_tree.

http://dl.acm.org/citation.cfm?id=563998.564036
http://dl.acm.org/citation.cfm?id=563998.564036
http://www.it.uu.se/research/group/languages/software/ca_tree
http://www.it.uu.se/research/group/languages/software/ca_tree

	Introduction
	Erlang Term Storage
	Table Types and Operations
	Implementation Aspects
	Current Scalability

	A High-Level View of CA Trees
	Components
	Assembling the Components

	Integrating CA Trees into ETS
	Performance Evaluation
	Scalability w.r.t. Operations and Contention Levels
	Scalability with Different Set Sizes
	Sequential Performance

	Related Work
	Discussion and Future Work
	Concluding Remarks

