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Abstract
The Erlang Term Storage (ETS) is an important component of the
Erlang runtime system, especially when parallelism enters the pic-
ture, as it provides an area where processes can share data. It is
therefore important that ETS’s implementation is efficient, flexible,
but also as scalable as possible. In this paper we document and de-
scribe the current implementation of ETS in detail, discuss the main
data structures that support it, and present the main points of its
evolution across Erlang/OTP releases. More importantly, we mea-
sure the scalability of its implementations, the effects of its tuning
options, identify bottlenecks, and suggest changes and alternative
designs that can improve both its performance and its scalability.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Concurrent, distributed and
parallel languages; Applicative (functional) languages; D.1.3
[Software]: Concurrent Programming—Parallel programming

General Terms Experimentation, Measurement, Performance

Keywords concurrent data structures, multi-core, Erlang

1. Introduction
Multicore computers are becoming increasingly commonplace. Er-
lang programs can benefit from this, as the current Erlang runtime
system comes with support for multiple schedulers (running in sep-
arate operating system threads) and is thus able to run Erlang pro-
cesses in parallel. Unfortunately, this is not enough to guarantee
scalability as the number of processor cores increases. Resource
sharing and the associated synchronization overhead can easily be-
come a scalability bottleneck on multicore machines.

The Erlang/OTP system provides two main ways of communi-
cating between processes, namely message passing and shared Er-
lang Term Storage (ETS) tables. Message passing is often the most
natural way to do interprocess communication. However, for some
applications, inserting and updating data stored in a shared memory
area, such as an ETS table, is a more appropriate alternative. For ex-
ample, the parallel version of many algorithms maintains a “state”
data structure which needs to be continuously accessible by all pro-
cesses rather than being passed around either as a spawn argument
or as part of a message. In such scenarios, even in Erlang, using a
shared ETS table is often the most reasonable implementation.
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ETS is a central component of Erlang/OTP. It is used internally
by many of its libraries and it is the underlying infrastructure of
main memory databases such as mnesia. (In fact, every ETS table
can be seen as a key-value store or an in-memory database table.)
Furthermore, ETS is heavily used in Erlang applications. Out of
190 open source Erlang projects that we searched, at least 41 had a
direct reference to a shared ETS table.1 We see two major reasons
why ETS is heavily used in Erlang projects. The first reason is
convenience. ETS provides a standard way to have a key-value
store. Having a standard way to do a common task makes it easier
for programmers to understand new code and avoids duplication
of the same functionality. The second reason is performance. A
big portion of ETS is written in C, as part of the Erlang runtime
system. It would be very difficult, if not impossible to implement
ETS purely in Erlang with similar performance. Due to its reliance
on mutable data, the functionality of ETS tables is very expensive
to model in a functional programming language like Erlang.

To use an ETS table, one needs to first create one using the
new/2 function, which returns a reference to the new table. This
reference can then be passed to all other ETS functions to specify
on which table they should operate. For example, the insert/2
function takes such a reference in its first argument, and either a
tuple with a key-value pair to be stored or a list of such tuples in its
second argument, and inserts them atomically in the corresponding
ETS table. Other operations include looking up an entry with a spe-
cific key, finding all terms matching a specified pattern, deleting an
entry or atomically deleting a list of entries with specific keys, etc.
In addition, it is possible to iterate over a table and visit all its el-
ements. A special function, called safe fixtable/2, allows this
to be done even while other operations work on the table. Iteration
starts with a call to the first/1 function and then calling next/2
repeatedly, until the end of the table is reached. Note, that depend-
ing on the type of the table the order of elements may or may not be
defined. More high level operations exists to, for example, query a
table for all tuples matching a specified pattern.

All ETS tables have a type: either set, bag, duplicate bag
or ordered set. The set type does not allow two elements in
the table with the same key. The bag type allows more than one
elements with the same key but not more than one element with the
same value. The duplicate bag type allows duplicate elements.
Finally, the ordered set type is semantically equivalent to the
set type, but allows traversal of the elements stored in the order
specified by the keys. In addition, it is possible to specify access
rights on ETS tables. They can be private to an Erlang process,
protected i.e. readable by all processes but writable only by
their owner, or public which means readable and writable by all

1 The open source projects selected were the ones with more than 10 watch-
ers on http://github.com and projects mentioned on the Erlang mailing
list. References in libraries used by the searched projects may be included,
if the source code repository contains the library source. The search through
the code is rather simplistic and only finds ets:new/2 calls with options
public or protected passed on the same line.



processes in an Erlang node. In this paper we focus on ETS tables
which are shared between processes.

When processor cores write or read to shared ETS tables, they
need to synchronize to avoid corrupting data or reading an inconsis-
tent state. ETS provides an interface to shared memory which ab-
stracts from the need of explicit synchronization, handling it inter-
nally. If a shared ETS table is accessed in parallel from many cores
at the same time, the performance of the application can clearly be
affected by how well the ETS implementation is able to handle par-
allel requests. Ideally, we would like the time per operation to be
independent of the number of parallel processes accessing the ETS
table. This goal is in practice not possible to achieve for operations
that need to change the same parts of the table. (However, it might
be possible to accomplish it when parallel processes access differ-
ent parts of a table.) We measure the scalability of an ETS table as
the amount of parallel operations that can be performed on the table
without getting a considerable slowdown in time per operation.

More specifically, in this paper we:

1. document and describe the implementation and evolution of the
Erlang Term Storage across Erlang/OTP releases, focussing on
its support for parallel accesses;

2. evaluate these implementations and the various ETS tuning
options in terms of scalability and performance; and

3. discuss improvements and possible alternative designs.

The rest of this paper is structured as follows. In the next section
we review the details of the low-level implementation of ETS and
in Section 3 we present the evolution of its support for parallelism.
After briefly reviewing related work in Section 4, the main part of
the paper measures the performance and scalability of ETS’ im-
plementation across different Erlang/OTP releases (Section 5) and
presents some ideas on how to further improve its performance and
scalability (Section 6). The paper ends with concluding remarks.

2. Low-Level Implementation
In this section, we describe in detail aspects of the current ETS
implementation (that of Erlang/OTP R16B) that affect performance
and scalability.

Memory Management The Erlang runtime system is currently
based on processes that have process-local stacks and heaps (i.e.,
heaps whose cells cannot be referenced from any point other than
from the process itself). The main benefit of this organization is that
memory management of processes can take place at any time with-
out requiring any sort of synchronization with other processes. An-
other invariant of the current Erlang runtime system is that the only
terms that reside outside the process heaps are statically known
constants, big binaries and bitstrings. Because processes are col-
lected on an individual basis and can die at any point, data that they
store into public ETS tables, presumably for other processes to ac-
cess, currently needs to be copied there upon insertion. Likewise,
when reading data from a shared ETS table this data is copied into
the process-local heap, because the table owner can also terminate
at any point. With this implementation scheme, ETS tables can be
managed independently of their owning process, and memory man-
agement does not have to track users of tables for safe deallocation.

Backend Data Structures The current implementation of tables
of type ordered set is based on the AVL tree data structure [1].
The other three types (set, bag and duplicate bag) are based on
the same linear hash table implementation [10], their only differ-
ence being in how they handle duplicate keys and duplicate entries.
In the benchmarks presented in later sections we have selected the
set type as representative for all hash based table types.
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Figure 1. ETS meta tables: In this example, there are three ETS
tables. An unnamed table with TID 0, and two named tables with
TIDs 257 and 256. The tables with TIDs 0 and 256 use hashing,
while the table with TID 257 is based on an AVL tree. TIDs
0 and 256 use the same lock in the meta main table. This is
not a problem here, as named tables are accessed through names
instead of TIDs. Tables atom1 and atom2 use the same lock in
meta name table. This can be a bottleneck if both tables are often
accessed at the same time. As atom2 and atom3 hash to the same
position in the meta name table, an additional list of tables in this
bucket is used for them.

Table Fixation When a table that is based on hashing is ex-
panded or contracted, the keys in the table structure might be re-
located. Fixating a table effectively disables growing and contract-
ing and keeps information about deleted elements. Table fixation
thus makes it possible to traverse a table, so every element that ex-
ists in the table at the beginning of the traversal will be returned at
most once. Elements inserted during traversal may or may not be
returned depending on their location in the internal table structure.

Per-Node Management Structures The following data structures
are maintained on a node-wide level and are used for generic book
keeping by the Erlang VM. Low-level operations, like finding the
memory location of a particular ETS table or handling transfers
of ownership, use only these data structures. There are two meta
tables, the meta main table and the meta name table. They
are depicted in Figure 1. Besides these, there are mappings from
process identifiers (PIDs) to tables they own and from PIDs to
tables that are fixated by them.

meta main table contains pointers to the main data structure of
each table that exists in the VM at any point during run-



time. Table identifiers (TIDs) are used as indices into the
meta main table. To protect accesses to slots of this table,
each slot is associated with a reader-writer lock, stored in an
array called meta main tab locks. The size of this array is
set to 256. Its locks are used to ensure that no access to an ETS
table is happening while the ETS table is constructed or deal-
located. Additionally the meta main table has one mutual
exclusion lock, which is used to prevent several threads from
adding or deleting elements from the meta main table at the
same time. Synchronization of adding and removing elements
from the meta main table is needed to ensure correctness in
the presence of concurrent creations of new tables.

meta name table is the corresponding table to meta main table
for named tables.

meta pid to tab maps processes (PIDs) to the tables they own.
This data structure is used when a process exits to handle
transfers of table ownership or table deletion.

meta pid to fixed tab maps processes (PIDs) to tables on which
they called safe fixtable/2.

Table Locking ETS tables use readers-writer locks to protect
accesses from reading data while this data is modified. This allows
accesses that only read to execute in parallel, while modifications
are serialized. Operations may also lock different sets of resources
associated with a particular operation on an ETS table:

• Creation and deletion of a table require acquisition of the
meta main table lock as well as the corresponding lock in
the meta main tab locks array.

• Creation, deletion and renaming of a named table also require
acquisition of the meta name table lock and the correspond-
ing lock in the meta name tab rwlocks array.

• Lookup and update operations on a table’s entries require
the acquisition of the appropriate lock within the ETS ta-
ble as well as acquisition of the corresponding read lock in
the meta main tab locks or meta name tab rwlocks ar-
ray. Without using any fine-tuning options, each table has just
one readers-writer lock, used for all entries.

3. Improvements Between Erlang/OTP Releases
ETS support for parallelism has evolved over time. Here we de-
scribe the major changes across Erlang/OTP releases.

3.1 Support for Symmetric Multiprocessing (R11B)
Erlang/OTP got support for symmetric multiprocessing (SMP) in
R11B. But not all runtime system components came with scalable
implementations at that point. We define fine grained locking sup-
port in ETS tables as support for parallel updates of different parts
of the table. In Erlang/OTP R11B, no ETS table type had any sup-
port for fine grained locking. Instead, each table was protected by a
single reader-writer lock. As we will see, the scalability of the ETS
implementation in R11B is not so good.

3.2 Support for Fine Grained Locking (R13B02-1)
Optional fine grained locking of tables implemented using hash-
ing (i.e. tables of types set, bag and duplicate bag) was intro-
duced in Erlang/OTP R13B02-1. The fine grained locking could
be enabled by adding the term {write concurrency,true} to
the list of ets:new/2 options. A table with fine grained locking
enabled had one reader-writer lock for the whole table and an addi-
tional array containing 16 reader-writer locks for the buckets. The
bucket locks are mapped to buckets in the way depicted in Fig-
ure 2. The mapping can be calculated efficiently by calculating
bucket index modulo lock array size.

bucket locks array

buckets

Figure 2. Mapping of locks to buckets using an array of four locks.

With the additional bucket locks protecting the buckets, a write
operation can happen in parallel with other write and/or read oper-
ations. With write concurrency enabled an ets:insert/2 op-
eration that inserts a single tuple will:

1. acquire the right meta table lock for reading;

2. acquire the table lock for reading;

3. release the meta table lock;

4. find the bucket where the tuple should be placed;

5. acquire the corresponding bucket lock for writing; and finally

6. insert the tuple into the bucket before releasing the bucket lock
and the read table lock.

Read operations need to acquire both the table lock and the bucket
lock for reading when write concurrency is enabled compared
to just acquiring the table lock for reading when this option was
not available. Thus enabling the write concurrency option can
make scenarios with just read operations slightly more expensive.
Hence this option was not (and still is not) on by default.

Most operations that write more than one tuple in an atomic
step, such as an ets:insert/2 operation inserting a list of tuples,
acquire the table lock for writing, instead of taking all the needed
bucket locks. (I.e., taking a single write lock was deemed more
performing than taking many locks which would likely lock large
parts of the table anyway.)

3.3 Reader Groups for Increased Read Concurrency (R14B)
All shared (i.e., public and protected) ETS tables have a table
reader-writer lock. This is true even for tables with fine grained
locking, since many operations need exclusive access to the whole
table. However, since all read operations, and with fine grained
locking even many common write operations (e.g. insert/2,
insert new/2, and delete/2) do not need exclusive access to
the whole table, it is crucial that the reader part of the lock is scal-
able.

In a reader-writer lock, a read acquisition has to be visible to
writers, so they can wait for the reads to finish before succeed-
ing to take a write lock. One way to implement this is to have
a shared counter that is incremented and decremented atomically
when reading threads are entering and exiting their critical section.
The shared counter approach works fine as long as the read criti-
cal section is long enough. However, it does not scale very well on
modern multicore systems if the critical section is short, since the
shared counter will entail a synchronization point. This synchro-
nization cost is significant, even on modern processors which have
a special instruction for incrementing a value atomically.

Figure 3 illustrates the problem of sharing a counter between
several threads. The cache line holding the counter needs to be
transferred between the two cores because of the way modern mem-
ory systems are constructed [15]. Transferring memory between
private caches of cores is particularly expensive on Non-Uniform
Memory Access (NUMA) systems, where cores can be located on
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Figure 3. Illustration of cache line invalidation: When there is
only a single counter (left, counter in blue), it can only be writ-
ten from one core efficiently. It is invalidated in all other cores’
caches on update. Using multiple counters in separate cache lines
(right, counters in blue and green) avoids this problem. When used
exclusively by one core, invalidation is unnecessary, so the counter
stays cached.

different chips, connected only by a slower interconnect with lim-
ited bandwidth. The reader counter can instead be distributed over
several memory words located in different cache lines. This makes
writing slightly more expensive, since a writer needs to check all
reader counters, but reading will scale much better.

Erlang/OTP R14B introduced the option read concurrency
that can be activated by specifying {read concurrency,true} in
the list of ets:new/2 options when creating an ETS table. This op-
tion enables so called reader groups for reader counters in the ETS
tables’ reader-writer locks. A reader group is a group of schedulers
(possibly just one in every group) that indicate reading by writing
to a separate cache line for the group. Erlang scheduler threads are
mapped to reader groups so that the threads are distributed equally
over the reader groups. The default number of reader groups in Er-
lang/OTP R14B is 16, but can also be set as a runtime parameter
to the Erlang VM. A scheduler indicates a read by incrementing a
counter in the memory area allocated for its reading group.

3.4 More Refined Locking and More Reader Groups (R16B)
As mentioned in Section 3.2, the write concurrency option en-
ables fine grained locking for the hash based tables. Before R16B
the buckets in the hash table were divided between 16 buckets. The
size of the lock array was increased in Erlang/OTP R16B from 16
to 64 to give better scalability on machines with many cores. The
default number of reader groups was also increased in Erlang/OTP
R16B from 16, which was the previous default, to 64. We will eval-
uate the effect of these two changes in Sections 5.2.2 and 6.1.

4. Related Work
Here we briefly discuss other work which is relevant to ETS and its
implementation. First, we review some past efforts to improve the
performance of ETS. Second, we discuss data structures that could
be used instead of or in addition to the current implementation,
focusing on how they could improve its scalability.

4.1 Past Work on ETS
As ETS is a crucial component of the Erlang runtime, there have
been previous attempts to improve its scalability and performance.

An ETS performance study comparing the current backends to
a Judy array based implementation was presented by Fritchie [6]. A
Judy array is a data structure similar to a trie, using compression to
improve space and cache utilization. While Judy arrays are them-
selves ordered, they require keys to be converted from Erlang’s in-
ternal memory format. The conversion does not preserve the Er-
lang term order, thus this implementation has to be considered as
unordered. For large table sizes, lookups and insertions seemed to
be faster with Judy arrays. However, term deletion and table traver-
sal seemed to be slower with Judy arrays than with the then exist-

ing implementations of set and ordered set. However, Fritchie’s
study was performed in 2003, before Erlang got support for SMP
and thus did not measure scalability. Its results are therefore not
fully comparable to the current ETS implementation, where data
structures not only have to perform well, but also provide scalabil-
ity in parallel scenarios.

In 2011, Nyblom suggested the addition of software transac-
tional memory (STM) support for ETS tables [14]. Adding STM to
Erlang was claimed to fit nicely with the actor programming model
that Erlang uses, especially since there is no way to ensure atomic-
ity of a sequence of ETS operations without serializing the access
by using an Erlang process as a proxy or implementing some kind
of locking mechanism. Serializing accesses to data will scale badly
on a multicore system and locking is difficult to use and does not fit
well with Erlang’s programming model. Thus, Nyblom suggested
ETS STM interfaces and implemented an experimental STM pro-
totype on top of ETS. Benchmarks of this prototype showed that
STM gives better scalability than serializing the accesses using a
process as a proxy. However, Nyblom also noted that there are con-
cerns about how the STM will scale on systems with more cores
and that more experiments need to be performed.

4.2 Alternative ETS Backends
The data structures we will now look at provide different levels
of progress guarantees. We adopt the definitions of Herlihy and
Shavit [9]. A thread can be delayed (blocked) arbitrarily long in
a blocking operation when some other thread is not executed. An
operation is lock-free (and thus non-blocking), if at least one con-
current thread can complete the operation in a bounded number of
steps. With a wait-free operation, all threads executing it will com-
plete in a bounded number of steps.

While it is beyond the scope of this work to implement and test
all data structures we review below, we briefly discuss why they are
interesting candidates for improving ETS’s scalability.

4.2.1 Unordered Data Structures
Currently, the unordered ETS tables are backed by a linear hash
table implementation. While there is some support for scalability
in this implementation, we identified the following problems that
inherently limit scalability:

• The number of bucket locks is fixed and can not adapt to the
table size or the number of concurrent accesses.

• Writers require exclusive access to a whole bucket, preventing
concurrent reads in the same bucket.

• Table expansion is sequential and happens one bucket at a time,
which limits scalability when ETS tables change size often.

• The use of locks makes it difficult to provide some progress
guarantees for the data structure.

The following lock-free data structures are interesting for ETS, as
they have no locking issues. This promises greater scalability than
the lock based hash table currently used in ETS, as all but the third
problem outlined above are related to locks.

Lock-free hash table Michael introduced a lock-free hash table
based on lock-free linked lists [11]. Michael’s table could be
more scalable than ETS tables backed by linear hashing, but
the algorithm does not support resizing. While this makes it
unfit for use in ETS, it may be a good choice for fixed size hash
tables, like the meta name table.

Lock-free split-ordered list Shavit and Shalev have proposed a
lock-free extendable hash table [16]. The table entries are stored
in a single lock-free linked list, which is sorted in split order.
Split order is the order in which the entries will be split into



other buckets when resizing the table. The data structure has
an extendable bucket array containing pointers to nodes in the
entry list. When finding an element, the key is first hashed to
a position in the bucket array and the pointer to the bucket it
followed. If the data structure is integrated as an ETS table type,
the use of ets:safe fixtable/2 will be unnecessary, like it
is already with tables of type ordered set.

4.2.2 Ordered Data Structures
We will also describe some ordered data structures, which could be
used for all currently available ETS table types, even though only
the ordered set type requires ordering. We will compare them
primarily to the current AVL tree backend. Its current implementa-
tion uses a single reader-writer lock to protect the table, obviously
providing little scalability. To accommodate for more parallelism,
it is thus necessary to look for alternatives.

Concurrent relaxed AVL tree The relaxed variant of the AVL
tree presented by Bronson et al. [4] is somewhat similar to
the current backend of ordered set. It uses invisible readers,
a technique from STM [17] that validates the reads using ver-
sion numbers in the data blocks. Its fast atomic clone operation
is interesting for atomic iteration over all elements in an ETS
table without stopping all other users of the table.

Concurrent B-Tree B-trees are popular in disk based databases,
as they use less disk block accesses than other data structures.
Bender et al. noticed that the access time differences between
the processor cache and main memory is similar to that between
main memory and disk. Based on this, they developed both
locking and lock-free variants of a B-tree [3]. As the same
reasoning applies to ETS as an in-memory database system, it
could prove beneficial to use a cache-optimized data structure.

Concurrent skip list Herlihy et al. have proposed a concurrent
skip list with a wait-free lookup operation and locking insert
and delete operations [8]. Modifying operations lock only the
nodes that will be modified, possibly requiring retries. This
skip list has been implemented as an experimental backend
for ETS tables, which is compared with current backends in
Section 6.2.1. This particular skip list was chosen as, according
to to its creators, it is easier to implement and prove correct
than Fraser’s lock free skip list [5,8], even though Fraser’s skip
list is completely lock-free, while supposedly providing similar
scalability and performance.

5. Performance and Scalability Study
Having described the implementation of ETS and its evolution,
in this section we measure its performance and scalability across
different Erlang/OTP releases and quantify the effect that tuning
options have on the performance of ETS using the benchmark
environment that we describe below.

Benchmark Machine and Runtime Parameters All benchmarks
were run on a machine with four Intel(R) Xeon(R) E5-4650 CPUs
(2.70GHz), eight cores each (i.e., a total of 32 cores, each with hy-
perthreading, thus allowing the Erlang/OTP system to have up to 64
schedulers active at the same time). The machine ran Linux 3.2.0-
4-amd64 SMP Debian 3.2.35-2 x86 64 and had 128GB of RAM.
For all benchmarks, the command line option +sbt tnnps was
set, except when not available in the Erlang/OTP release (i.e. it
was not used in R11B-5 since it was introduced in a later re-
lease). This option requests a thread pinning policy that spreads
the scheduler threads over hardware cores, but one NUMA node at
a time. When cores can handle more than one thread in hardware,
the work is spread evenly among all cores before additional sched-
ulers are bound to cores that are already in use. So on our machine,

benchmarks with up to eight schedulers were run on one NUMA
node, benchmarks with nine to sixteen schedulers were run on two
NUMA nodes, and so on. Schedulers 33 through 64 are mapped to
hyperthreads on cores already in use by another scheduler. This pol-
icy tries to use the available computation power, while minimizing
the communication cost between the schedulers. See +sbt in the
Erlang manual for more detailed information about the option. For
the compilation of Erlang/OTP releases, GCC version 4.7.2 (De-
bian 4.7.2-5) was used.

Benchmark Description For benchmarking we used bencherl,
a benchmarking infrastructure for measuring scalability of Er-
lang applications [2]. The benchmark we used is ets bench, a
benchmark measuring distinct times for three phases: insertion,
access and deletion. The benchmark is designed to measure only
those actions and no auxiliary work, like generating random num-
bers, or distributing them among worker processes. It sets up an
ETS table prior to measuring, using write concurrency and
read concurrency when the options are available in the Er-
lang/OTP release, unless specified otherwise. All ETS operations
use uniformly distributed random keys between 1 and 2, 097, 152.
To make use of the available processing resources, the benchmark
starts one worker process per available scheduler, while the num-
ber of schedulers is varied by bencherl. First, the insertion phase
evenly distributes 1, 048, 576 keys to the workers, and measures
the time it takes for them to insert these keys into the table. To
reduce the cost of coping memory, the tuples that we insert into
the table contains just one element (the key). Secondly, the access
phase generates 16, 777, 216 pairs of keys and operations, where
an operation is either a lookup, an insert, or a delete. To create dif-
ferent scenarios of table usage, we varied the percentage of lookup
vs. update operations in the access phase; namely we created work-
loads with 90%, 99% and 100% lookups. For the remaining 10%
and 1% updates, the probability for inserts and deletes is always
identical, so that the size of the data structure should stay roughly
the same. The measured runtime is only the time taken for this
second stage of the benchmark.

Information on the Figures In all graphs, the x-axis shows the
number of runtime schedulers and the y-axis shows time in sec-
onds. To ensure that the benchmark results are reliable, we run each
benchmark three times. The data points in the graphs presented in
the following sections is the average run time of these three runs.
We also show the minimum and maximum run time for the three
runs as a vertical line at each data point.

5.1 Performance and Scalability Across OTP Releases
First, we measure scalability of the Erlang/OTP releases with major
changes in ETS (R11B-5, R13B02-1, R14B, and R16B), for access-
ing tables of type set and ordered set using the three workloads
mentioned above. The results are shown in Figures 4–9. Note that
the x-axis shows the number of schedulers and the y-axis shows run
time in seconds.

5.1.1 Workloads with 90% Lookups and 10% Updates
As can be seen in Figure 4, the scalability of ETS tables of type set
improved significantly starting with release R14B. As described
in Section 3, the main change in this release was the introduc-
tion of reader groups. However, the scalability difference between
R13B02-1 and R14B is unlikely to be caused by reader groups
alone. Another important change between these two releases is that
the locks in the meta main tab locks array was changed from
using mutual exclusion locks to reader-writer locks. In fact the
reader-writer locks used for the meta table are of the new type
with reader groups enabled. Even though the meta table lock is
just acquired for a very short time in the benchmark (to read the
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Figure 4. Scalability of ETS tables of type set across Erlang/OTP
releases using a workload with 90% lookups and 10% updates.
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Figure 5. Scalability of ETS tables of type ordered set across
OTP releases using a workload with 90% lookups and 10% updates.

meta main table), it is reasonable to believe, after looking at Fig-
ure 4, that doing this is enough to give unsatisfactory scalability.

Figure 5 shows scalability of the same workload with a ta-
ble of type ordered set. An unexpected result here is that Er-
lang/OTP R14B performs better than R16B. In fact, R16B seems to
scale even worse than R11B-5 on this workload. The main change,
which affects tables of type ordered set, between releases R14B
and R16B is the number of reader groups. (The effect of reader
groups on scalability is investigated further in Section 5.2.2.) For
this workload, scalability is worst in R13B02-1. In R11B, the ta-
ble’s main reader-writer lock used was taken from pthreads [13],
while in R13B02-1 a custom locking implementation was intro-
duced for some platforms. More work needs to be done to find
out which changes actually cause the difference in the results. The
problem is that a lot of structural changes happened in R13B02-1 to
support fine grained locking of ETS tables based on hashing, which
makes it difficult to find the exact cause for the difference.

5.1.2 Workloads with 99% Lookups and 1% Updates
For an ETS table of type set, the results for this workload, shown
in Figure 6, are very similar to those with 10% update operations.
Compare them with those in Figure 4.

For a table of type ordered set, whose implementation does
not support fine grained locking, once again R14B achieves the
best performance; see Figure 7. Also as can be seen from the same
figure, the performance of the custom locking implementation in
R13B02-1 is slightly better than that of R11B-5 for low numbers
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Figure 6. Scalability of ETS tables of type set across Erlang/OTP
releases using a workload with 99% lookups and 1% updates.
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Figure 7. Scalability of ETS tables of type ordered set across
OTP releases using a workload with 99% lookups and 1% updates.

of schedulers. However, its performance significantly drops once
the level of parallelism becomes high enough; especially once
schedulers cannot be pinned in the same processor chip and effects
from NUMA start to become noticeable. It is clear that the custom
locking scheme was not designed for such levels of parallelism
back in 2009. The good news is that its performance has improved
since then, but on the other hand it is disturbing that the scalability
of Erlang/OTP R16B gets so much worse than that of R14B.

5.1.3 Workloads with 100% Lookups
When measuring workloads with only lookups, the results and
conclusions are the same for R11B-5 and R13B02-1; see Fig-
ures 8 and 9. As far as the performance of R16B vs. R14B is con-
cerned, one can notice a scalability difference between ETS tables
of type set vs. ordered set. Intuitively, one would assume that,
due to the absence of write locking, the scalability should be similar
for both table types on this benchmark. Contrary to this expectation,
the set table type scales better than ordered set.

Upon closer examination we discovered that the AVL tree im-
plementation internally uses a stack for walking through the tree.
While this is perfectly normal, the problem comes from a memory
allocation optimization, which statically allocates one such stack
which is used whenever it is not already in use by another oper-
ation. When already in use, a dynamic stack is used instead. This
results in a bottleneck: the static stack is transferred between sched-
ulers. As the stack is written to, it cannot be cached locally, which
increases the communication cost drastically. As explained, the pin-
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Figure 8. Scalability of ETS tables of type set across Erlang/OTP
releases using a workload with 100% lookups.

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

R11B-5
R13B02-1
R14B
R16B

Figure 9. Scalability of ETS tables of type ordered set across
OTP releases using a workload with 100% lookups.

ning policy groups the first eight schedulers on the same processor
chip, which gives it a lower latency for cache coherency messages.
This is the reason for the static stack not having a negative impact
for up to eight schedulers on this machine. The effect then gradu-
ally increases until the stack is almost continually used. After that,
more parallelism results in more dynamic stacks being used, which
scales better. The effect of this static stack is further investigated in
Section 5.3.

5.2 Effect of Tuning Options
We have described the two ETS options write concurrency and
read concurrency and the runtime command line option +rg in
Section 3. Here we report on their effectiveness by measuring the
performance effect for enabling vs. not enabling these options on
the ets bench benchmark run on Erlang/OTP R16B.

5.2.1 Effect of Concurrency Options
How options write concurrency and read concurrency influ-
ence the ETS data stuctures and locks is summarized in Table 1.

Figures 10, 11 and 12 show the performance results. The x-axis
shows the number of schedulers and the y-axis shows run time in
seconds. On the workloads with a mix of lookups and updates, it is
clear that the only configurations that scale well are those with fine
grained locking. Without fine grained locking, read concurrency
alone is not able to achieve any improvement on mixed workloads
even when the percentage of updates is as low as 1%. In fact, for
tables of type ordered set, the option read concurrency does

no r w r & w
set lock type normal freq r freq r freq r

set bucket lock type - - normal freq r
ordered set lock type normal freq r normal freq r

Table 1. r denotes read concurrency enabled, w denotes
write concurrency enabled, set lock type and ordered set lock
type refer to the type of the lock, normal means the default reader-
writer lock without the reader groups optimization and freq r
means the reader-writer lock with reader groups optimization.
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Figure 10. Scalability of ETS on a workload with 90% lookups
and 10% updates when varying the ETS table concurrency options.
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Figure 11. Scalability of ETS on a workload with 99% lookups
and 1% updates when varying the ETS table concurrency options.

not manage to achieve any speedup even on lookup only workloads;
cf. Figure 12. We will explain why this is so in Section 5.3.

Interestingly, for tables of type set, there is no significant
gain in using both read concurrency and write concurrency
compared to enabling just the write concurrency option. On
the other hand, the memory requirements are increased with a
significant constant when both options are enabled compared to
enabling just write concurrency. With the default settings, a
reader-writer lock with reader groups enabled requires 64 cache
lines (given that at least 64 schedulers are used). Since there are
64 bucket locks in R16B and usually 64 bytes for a cache line that
means at least 64 × 64 × 64 bytes (= 0.25 MB) for every table
with both read concurrency and write concurrency enabled.
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Figure 13. Scalability of ETS tables of type set, on 90% lookups
and 10% updates, when varying the number of reader groups.
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Figure 14. Scalability of ETS tables of type set, on 99% lookups
and 1% updates, when varying the number of reader groups.

5.2.2 Effect of Reader Groups (read concurrency and +rg)
To test the effect of the runtime system parameter +rg, which is
used to set the maximum number of reader groups, we ran the
ets bench benchmark varying the number of reader groups. The
default number of reader groups in R16B is 64. The actual number
of reader group is set to the minimum of the number of schedulers
and the value of the +rg parameter. The result of the benchmark is
depicted in Figures 13–18.
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Figure 15. Scalability of ETS tables of type set, performing only
lookups, when varying the number of reader groups.
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Figure 16. Scalability of tables of type ordered set, on 90%
lookups and 10% updates, varying the number of reader groups.
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Figure 17. Scalability of tables of type ordered set, on 99%
lookups and 1% updates, varying the number of reader groups.

It is clear from the figures showing the results for the set type
(Figures 13, 14 and 15) that just having one reader group is not
sufficient. For the workloads measured in the benchmark it seems
like four or eight reader groups perform well. However, from 4
to 64 reader groups performance varies very little for tables of
type set. It is worth noting that for set, the lock acquisitions
are distributed over 64 bucket locks. Therefore, none of the bucket
locks are likely to have many concurrent read and write accesses.
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Figure 18. Scalability of tables of type ordered set, on 100%
lookups, when varying the number of reader groups.

The results for tables of type ordered set are more intriguing.
For these tables, it seems that many reader groups can hurt per-
formance in mixed lookup and update workloads; see Figures 16
and 17. A good choice for the number of reader groups when us-
ing ordered set in these cases seems to be two to eight. Two to
eight reader groups also seems to perform comparatively well on
the lookup only workload; cf. Figure 18.

It is worth noting that there are several reader-writer locks (that
are affected by the +rg parameter) protecting different critical
sections with different kinds of access patterns. For example, the
reader-writer locks protecting the meta main table are expected
to be very frequently acquired for reading, while the reader-writer
locks protecting the buckets in set tables to be relatively frequently
acquired for writing. Finding a setting that works for most use
cases will probably be increasingly difficult as the number of cores
per system grows. Theoretically, read only scenarios should benefit
from as many reader groups as the number of schedulers, while
write only scenarios should benefit from as few reader groups as
possible.

Tables of type ordered set do not support fine grained lock-
ing and thus the table’s global lock quickly becomes a scalability
bottleneck. Note that the lack of scalability in the absence of writers
(cf. Figure 18) is due to an implementation detail of the AVL tree
and not caused by the reader groups. See Section 5.3 for details.

5.3 A Bottleneck in the AVL Tree Implementation
Finally, we measure the effect of the static stack allocation in the
AVL tree. (The use of this stack was mentioned in Section 5.1.3.)
To measure its impact, we applied a patch to Erlang/OTP R16B,
which causes all operations to use a dynamic stack instead.

When running ets bench on this patched version of Erlang, the
results for mixed operations did not change significantly. However,
the results for the lookup-only workload, shown in Figure 19,
changed drastically: ordered set, based on the AVL tree, scales
now even better than the hash table based set. This proves that this
stack is indeed the bottleneck observed in Section 5.1.3. Removing
it from the code path of lookups is therefore advisable.

6. Towards ETS with Better Scalability
In this section we present some ideas for extending or redesigning
the ETS implementation in order to achieve even better scalability
than that currently offered by Erlang/OTP R16B. These ideas range
from allowing more programmer control over the number of bucket
locks in hash-based tables, using non-blocking data structures or
existing data structure libraries with better performance, to schemes
for completely eliminating the locks in the meta table.
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Figure 19. Scalability on a lookup-only workload when the
AVL tree implementation uses a static (unpatched) vs. dynamic
(patched) stack. (See Table 1 for the explanation of no, r and rw.)

6.1 Number of Bucket Locks
As mentioned in Section 3.4 the number of bucket locks for the
hash-based ETS tables was increased in Erlang/OTP R16B from 16
to 64. To understand how the number of bucket locks affects per-
formance, ets bench was run with varying number of bucket locks.
Currently, the number of bucket locks can not be set by a runtime
parameter, therefore a version of Erlang/OTP R16B was compiled
for each number of bucket locks tested. The benchmark was run
with write concurrency and read concurrency enabled.

Figures 20, 21 and 22 show the benchmark results for the three
kinds of workloads we consider. A bigger number of bucket locks
has, unsurprisingly, a positive impact on scalability up to a certain
point where the positive effect wears off. The number of bucket
locks for an ETS table should be decided as a trade off between
different factors:

1. how many schedulers the Erlang VM starts with;

2. how often and by how many processes the table is accessed;

3. what type of access is common for the table (for example,
extremely read heavy tables do not require as many bucket locks
as extremely write intensive tables); and

4. the overhead of having more locks than required.

What is a good trade off depends on the application and might
change as computer technology develops. So our recommendation
is to add support for setting the number of bucket locks at runtime
and per table in future Erlang/OTP releases.

6.2 Alternative Backend Data Structures
To ease development and experimentation with alternative schemes,
we developed a minimalistic interface for hooking up data structure
implementations that support the main ETS functionality. While
this interface currently does not support all ETS operations and is
not ready for production use, it allows us to plug in data structures
with only minimal glue code. We implemented a few experimental
backends for ETS to learn about its internals. Here we describe
two of these implementations to showcase the kind of performance
differences achievable by alternative backend data structures.

6.2.1 Concurrent Skip Lists as Alternative to AVL Trees
As a first experiment, we have implemented a variant of a con-
current skip list with wait-free lookups [8] and integrated it into
ETS as an alternative table type that we call cskiplist. We se-
lected this data structure because of its non-blocking property and
because it provides efficient support for the main ETS operations
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Figure 20. Effect of the number of bucket locks on a workload
with 90% lookups and 10% updates on a table of type set.
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Figure 21. Effect of the number of bucket locks on a workload
with 99% lookups and 1% updates on a table of type set.
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Figure 22. Effect of the number of bucket locks on a workload
with only lookups on a table of type set.

(i.e. insert, lookup and delete) which was easy to implement.
If needed, the remaining ETS operations can be trivially supported
by acquiring a write lock on the whole table, but of course such an
implementation cannot be expected to achieve good scalability.

In the cskiplist implementation, as well as in most other non-
blocking data structures, memory blocks can be deleted while other
threads are reading them. The memory management component
needs to deal with this so that readers can not read memory that
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Figure 23. Comparison of a concurrent skip list against set and
ordered set on a workload with 90% lookups and 10% updates.
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Figure 24. Comparison of a concurrent skip list against set and
ordered set on a workload with 99% lookups and 1% updates.

is not part of the data structure anymore. One solution is to use
automatic memory management (garbage collection) and not free
any memory blocks explicitly. Another solution, which is the one
we selected for cskiplist, is provided by hazard pointers [12].
Hazard pointers require that every thread maintains:

• a thread local list of pointers to data that the thread currently
accesses and can not be freed by other threads (read list) and

• a thread local list of pointers to data that will be freed later (free
list).

When a thread detects that its free list has reached a certain size it
scans the read list of all other threads and frees the memory blocks
that are not found in these lists.

ETS tables implemented by cskiplists have been compared
against ordered set tables implemented by AVL trees and set
tables implemented using linear hashing on the workloads we con-
sider. The results of these comparisons are shown in Figures 23, 24
and 25. The cskiplist is very slow in the sequential case. It has
been shown by Hart et al. [7] that memory reclamation strategies
have a significant impact on the performance of data structures, and
could therefore be a good starting point for improving this back-
end implementation. However, cskiplist achieves much better
scalability than the current ordered set implementation for the
workloads with both lookups and updates.
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Figure 25. Comparison of a concurrent skip list against set and
ordered set on a workload with only lookups.
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Figure 26. Comparison of the ETS hash table implementation
against a hash table from the C++ standard library for a low number
of schedulers on a workload with 90% lookups and 10% updates.

6.2.2 Using Data Structures from Available Libraries
The interface we developed has an additional layer which allows
us to use C++ in addition to C. This both eases implementation
of data structures and gives us access to a large range of data
structure libraries. As a proof of concept, we wrote the necessary
glue code to use std::unordered set as a backend to ETS. It
is a minimalistic hash table interface that comes with the standard
library of C++11, though it does not allow all ETS functionality to
be used. In particular, iteration over the table is not supportable and
there is no fine grained locking support either. This means an ETS
table based on std::unordered set has to be locked completely
on update operations, similar to the current implementation of
tables of type ordered set.

Figure 26 shows the performance of ETS tables using the
std::unordered set library compared to the current set im-
plementation for low levels of parallelism. At high parallelism,
the C++ implementation obviously cannot compete with set with
write concurrency due to requiring full locking for updates.
One can observe however that the sequential execution is signif-
icantly faster for the std::unordered set based table. This is
likely caused by not having to support all the operations that the
set implementation provides, and using an exponentially grow-
ing hash table instead of a linear one. Still, it raises the question
whether ETS can profit from using faster data structures in cases
where these features are not required by the application.
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Figure 27. Comparison of current hash based ETS vs. a hash table
from the C++ standard library on a workload with only lookups.

Especially in read-only workloads, as that of Figure 27, the ben-
efits are clear. When not using read concurrency, both backends
perform similarly and are clearly limited by the performance of the
lock used. Enabling read concurrency exposes the bare perfor-
mance difference between the two backends. The C++ library is
36% faster initially, and even 60% faster on 64 schedulers.

What is clear from this experiment that using feature-rich data
structures comes at a price. This price may be acceptable for most
use cases, but having the option to not pay it could be beneficial for
some use cases. The performance of this experimental ETS table
backend can be seen as a rough estimate how much performance
one could gain from exposing more choices to the user, i.e. allow
them to disable certain parts of the ETS interface that are costly in
performance even when not used.

6.3 More Scalable Alternatives to Meta Table Locking
As described in Section 2, the ETS meta table is an internal data
structure that maps table identifiers to the corresponding table data
structures. The elements in the meta table are protected by readers-
writer locks that we call meta table locks. The writer part of a
meta table lock is only taken when tables are created or deleted.
However, a meta table lock is acquired for reading every time a
process executes an ETS operation. This lock might be a scalability
problem since, if many processes access a single table frequently,
there can be contention on memory bandwidth due to the write
accesses to take the read lock.

In a prototype implementation of the Erlang VM, we have
completely removed the need for meta table locks. Instead, the meta
table is read and modified by atomic instructions. This approach
leaves only ETS deletion as a problem, as tables can be deleted
while readers access the data structure. To solve this issue, we have
added a scheduler local pointer to the ETS table that is currently
being accessed. The scheduler local ETS pointer is from here on
simply called ETS pointer. Before a table is deallocated it is first
marked as dead in the meta table and then the thread blocks until
no ETS pointer is pointing to the ETS table.

In another prototype, an alternative locking scheme for the table
lock based on the ETS pointers was tested. In this locking scheme
a read is indicated by setting the ETS pointer for the scheduler.
This approach to read indicating is similar to the lock reader groups
implementation described in Section 3.3 but with the advantage of
using less memory. One disadvantage of the ETS pointer approach,
compared to reader groups, is that in some scenarios it might be
more expensive for writes, since ETS pointers might be modified
because of reads in other tables which might cause an additional
cache miss for the writer. The cache miss happens because a write



instruction issued by one core invalidates the corresponding cache
line in the private cache of all other cores. However, the extra
memory that is required by the reader groups approach might also
cause more cache misses if the cache is too small to fit all memory.

7. Concluding Remarks
We presented a brief overview of the internals of ETS and how
its support for multicore machines has evolved over time. In addi-
tion, we measured the scalability of ETS, both across different Er-
lang/OTP releases and when using the various concurrency options
and runtime system parameters that can influence its performance.
From our scalability study we have identified a couple of problems
with the current implementations and proposed improvements:

• The implementation of tables of type ordered set does not
scale well under mixed workloads. In fact, the current imple-
mentation has a scalability problem even on read-only scenarios
which can be easily solved with a simple patch we described.

• Non-blocking data structures, such as the concurrent skip list
we tried, would scale much better than the current implemen-
tation of ordered set, but whether they can be made to be as
fast as it for low levels of concurrency is still an open question.

• On the positive side, ETS tables based on hashing scale quite
well when the write concurrency option is enabled, at least
on scenarios where the operations use randomly distributed
keys. Still, lock-free data structures may be able to further
improve scalability, especially when the choice of keys is biased
heavily. It remains as future work to integrate and evaluate some
lock-free data structures in ETS.

Regarding the various table concurrency options and tunable run-
time parameters (e.g. number of reader groups, number of bucket
locks, etc.), we believe that they are inherently difficult to get right
because a good set up depends on both the hardware and the usage
scenario. Furthermore, some tables might need more bucket locks
to function well than other tables in the same system. Investigating
scalable synchronization primitives and data structures that scale
well on many different usage scenarios and that do not require ex-
tensive manual fine-tuning also remains as future work.
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